首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >A Compact RF CMOS Modeling for Accurate High-Frequency Noise Simulation in Sub-100-nm MOSFETs
【24h】

A Compact RF CMOS Modeling for Accurate High-Frequency Noise Simulation in Sub-100-nm MOSFETs

机译:紧凑的RF CMOS建模,可精确模拟100nm以下MOSFET中的高频噪声

获取原文
获取原文并翻译 | 示例
           

摘要

A compact RF CMOS model incorporating an improved thermal noise model is developed. Short-channel effects (SCEs), substrate potential fluctuation effect, and parasitic-resistance-induced excess noises were implemented in analytical formulas to accurately simulate RF noises in sub-100-nm MOSFETs. The intrinsic noise extracted through a previously developed lossy substrate de-embedding method and calculated by the improved noise model can consistently predict gate length scaling effects. For 65- and 80-nm n-channel MOS with $f_{T}$ above 160 and 100 GHz, ${rm NF}_{min}$ at 10 GHz can be suppressed to 0.5 and 0.7 dB, respectively. Drain current noise $S_{ rm id}$ reveals an apparently larger value for 65-nm devices than that for 80-nm devices due to SCE. On the other hand, the shorter channel helps reduce the gate current noise $S_{rm ig}$ attributed to smaller gate capacitances. Gate resistance $R_{g}$-induced excess noise dominates in $S_{rm ig}$ near one order higher than the intrinsic gate noise that is free from $R_{g}$ for 65-nm devices. The compact RF CMOS modeling can facilitate high-frequency noise simulation accuracy in nanoscale RF CMOS circuits for low-noise design.
机译:开发了包含改进的热噪声模型的紧凑型RF CMOS模型。在分析公式中实现了短沟道效应(SCE),衬底电势波动效应和寄生电阻引起的过量噪声,以精确模拟100 nm以下MOSFET中的RF噪声。通过先前开发的有损衬底去嵌入方法提取的本征噪声并通过改进的噪声模型进行计算,可以始终预测栅极长度缩放效应。对于$ f_ {T} $高于160和100 GHz的65和80 nm n沟道MOS,在10 GHz时$ {rm NF} _ {min} $可以分别抑制为0.5和0.7 dB。由于SCE,漏极电流噪声$ S_ {rm id} $揭示了65nm器件的值明显大于80nm器件的值。另一方面,较短的沟道有助于减小归因于较小的栅极电容的栅极电流噪声$ S_ {rm ig} $。栅极电阻$ R_ {g} $引起的过量噪声在$ S_ {rm ig} $中占主导地位,比65纳米器件的固有栅极噪声(不含$ R_ {g} $)高出一个数量级。紧凑的RF CMOS建模可以促进纳米级RF CMOS电路中用于低噪声设计的高频噪声仿真精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号