首页> 外文期刊>Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on >Efficient and Accurate Statistical Analog Yield Optimization and Variation-Aware Circuit Sizing Based on Computational Intelligence Techniques
【24h】

Efficient and Accurate Statistical Analog Yield Optimization and Variation-Aware Circuit Sizing Based on Computational Intelligence Techniques

机译:基于计算智能技术的高效,精确的统计模拟量优化和变化感知电路尺寸

获取原文
获取原文并翻译 | 示例
           

摘要

In nanometer complementary metal-oxide-semiconductor technologies, worst-case design methods and response-surface-based yield optimization methods face challenges in accuracy. Monte-Carlo (MC) simulation is general and accurate for yield estimation, but its efficiency is not high enough to make MC-based analog yield optimization, which requires many yield estimations, practical. In this paper, techniques inspired by computational intelligence are used to speed up yield optimization without sacrificing accuracy. A new sampling-based yield optimization approach, which determines the device sizes to optimize yield, is presented, called the ordinal optimization (OO)-based random-scale differential evolution (ORDE) algorithm. By proposing a two-stage estimation flow and introducing the OO technique in the first stage, sufficient samples are allocated to promising solutions, and repeated MC simulations of non-critical solutions are avoided. By the proposed evolutionary algorithm that uses differential evolution for global search and a random-scale mutation operator for fine tunings, the convergence speed of the yield optimization can be enhanced significantly. With the same accuracy, the resulting ORDE algorithm can achieve approximately a tenfold improvement in computational effort compared to an improved MC-based yield optimization algorithm integrating the infeasible sampling and Latin-hypercube sampling techniques. Furthermore, ORDE is extended from plain yield optimization to process-variation-aware single-objective circuit sizing.
机译:在纳米互补金属氧化物半导体技术中,最坏情况的设计方法和基于响应面的良率优化方法都面临着精度方面的挑战。蒙特卡洛(MC)仿真对于产量估算是通用且准确的,但其效率不足以实现基于MC的模拟产量优化,这需要大量的产量估算实用。在本文中,受计算智能启发的技术可用于在不牺牲准确性的情况下加快良率优化。提出了一种新的基于采样的良率优化方法,该方法确定了器件尺寸以优化良率,该方法称为基于序数优化(OO)的随机尺度差分演化(ORDE)算法。通过提出两阶段的估计流程并在第一阶段引入OO技术,可以将足够的样本分配给有前途的解决方案,并避免了对非关键解决方案的重复MC仿真。通过所提出的进化算法,该算法使用差分进化进行全局搜索,并使用随机尺度的变异算子进行微调,可以显着提高产量优化的收敛速度。与相同的精度相比,与结合了不可行采样和Latin-hypercube采样技术的基于MC的改进产量优化算法相比,所得的ORDE算法在计算工作量方面可实现大约十倍的改进。此外,ORDE从普通成品率优化扩展到了可识别过程变化的单目标电路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号