...
首页> 外文期刊>IEEE transactions on circuits and systems . I , Regular papers >Novel Radiation Hardening Read/Write Circuits Using Feedback Connections for Spin–Orbit Torque Magnetic Random Access Memory
【24h】

Novel Radiation Hardening Read/Write Circuits Using Feedback Connections for Spin–Orbit Torque Magnetic Random Access Memory

机译:使用反馈连接的自旋轨道扭矩磁性随机存取存储器的新型辐射硬化读/写电路

获取原文
获取原文并翻译 | 示例
           

摘要

With downscaling of process technology, conventional memories encounter challenges, such as soaring static power, low reliability, and charge sharing effect induced by radiation effects. Magnetic random access memory (MRAM) is considered as an outstanding candidate for addressing these challenges. In particular, emerging spin-orbit torque (SOT) MRAMs have shown ultra-fast switching and read-disturbance immunity compared with spin-transfer torque MRAMs. However, the write operation of the SOT-MRAM is more vulnerable to single-event upsets (SEUs) as its ultra-short write pulse is comparable to the radiation current pulse. In addition, its read circuit can also be disturbed by SEUs or even double-node upsets (DNUs) induced by the charge sharing effect. In this paper, we investigate radiation effects on read/write circuits of the SOT-MRAM. Then, we propose novel radiation hardening designs for SOT-MRAM. The hardening technique is first studied at the write circuit by adding six PMOS transistors as a feedback structure to charge/discharge. Afterwards, we propose a radiation hardening read circuit addressing the issue of SEUs and DNUs, which uses redundant six transistors and two feedback connections as the hardening structure. Based on a physics-based SOT magnetic tunnel junction model and a 65-nm complementary metal-oxide-semiconductor design kit, simulation results indicate that radiation-induced soft errors can be corrected at sensitive nodes. Moreover, the error rate of the proposed read circuit is 40x smaller than the previous work, and restoring time is reduced by 30.6% with negligible area overhead.
机译:随着制程技术的缩减,常规存储器遇到挑战,例如静态功率飞涨,可靠性低以及辐射效应引起的电荷共享效应。磁性随机存取存储器(MRAM)被认为是解决这些挑战的杰出选择。特别是,与自旋转移矩MRAM相比,新兴的自旋轨道转矩(SOT)MRAM已显示出超快的切换和抗读取干扰性。但是,由于SOT-MRAM的超短写脉冲可与辐射电流脉冲相媲美,因此它更容易受到单事件翻转(SEU)的影响。此外,其电荷共享效应还会导致SEU​​甚至双节点翻转(DNU)干扰其读取电路。在本文中,我们研究了辐射对SOT-MRAM读/写电路的影响。然后,我们提出了用于SOT-MRAM的新型辐射硬化设计。首先在写入电路中研究硬化技术,方法是添加六个PMOS晶体管作为反馈结构进行充电/放电。之后,我们提出了一种辐射硬化读取电路,以解决SEU和DNU的问题,该电路使用冗余的六个晶体管和两个反馈连接作为硬化结构。基于基于物理学的SOT磁性隧道结模型和65nm互补金属氧化物半导体设计套件,仿真结果表明,可以在敏感节点处校正辐射引起的软错误。此外,所提出的读取电路的错误率比以前的工作小40倍,并且恢复时间减少了30.6%,而面积开销却可以忽略不计。

著录项

  • 来源
  • 作者单位

    Beihang Univ, Beijing Adv Innovat Ctr Big Data & Brain Comp, Sch Microelect, Fert Beijing Res Inst, Beijing 100191, Peoples R China|Beihang Univ, Sch Elect & Informat Engn, Beijing 100191, Peoples R China|Beijing Microelect Technol Inst, Beijing 100076, Peoples R China;

    Beihang Univ, Beijing Adv Innovat Ctr Big Data & Brain Comp, Sch Microelect, Fert Beijing Res Inst, Beijing 100191, Peoples R China;

    Beihang Univ, Sch Elect & Informat Engn, Fert Beijing Res Inst, Beijing 100191, Peoples R China;

    Chinese Acad Sci, Inst Microelect, Beijing 100076, Peoples R China;

    Beihang Univ, Beijing Adv Innovat Ctr Big Data & Brain Comp, Sch Microelect, Fert Beijing Res Inst, Beijing 100191, Peoples R China;

    Beijing Microelect Technol Inst, Beijing 100076, Peoples R China;

    Beihang Univ, Sch Elect & Informat Engn, Fert Beijing Res Inst, Beijing 100191, Peoples R China;

    Beihang Univ, Beijing Adv Innovat Ctr Big Data & Brain Comp, Sch Microelect, Fert Beijing Res Inst, Beijing 100191, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    SOT-MRAM; radiation hardening techniques; single event upset; double-node upset; particle; reliability;

    机译:SOT-MRAM;辐射硬化技术;单一事件令人不安;双节点镦粗;粒子;可靠性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号