首页> 外文期刊>Selected Topics in Quantum Electronics, IEEE Journal of >Probing Ultrafast Carrier Dynamics in Silicon Nanowires
【24h】

Probing Ultrafast Carrier Dynamics in Silicon Nanowires

机译:探索硅纳米线中的超快载流子动力学

获取原文
获取原文并翻译 | 示例
           

摘要

We present the first ultrafast optical pump–probe spectroscopic measurements, to the best of our knowledge, on silicon nanowires (SiNWs). In this study, we performed femtosecond pump–probe measurements on vapor–liquid–solid-grown SiNWs to investigate the influence of the NW diameter, pump and probe polarizations, and pump fluence on the observed dynamics while tuning the probe wavelength below and above the indirect bandgap in Si. For smaller NW diameters, carriers were found to relax more rapidly into both extended and localized states, indicating that a surface-mediated mechanism governs the observed dynamics. The magnitude of the photoinduced transmission change exhibited strong polarization dependence, showing that optical transitions in these quasi-1D systems are highly polarized along the NW axis. Finally, density-dependent experiments revealed that the relaxation time decreases with increasing photoexcited carrier density for an above bandgap probe; however, no significant density-dependent changes in the relaxation dynamics were observed when probed below the bandgap. In short, our experiments reveal the influence of diameter, polarization, and carrier density on carrier dynamics in SiNWs, shedding light on the phenomena that govern carrier relaxation in these important nanosystems and giving insight on their future use in nanophotonic applications.
机译:据我们所知,我们展示了硅纳米线(SiNWs)上的首个超快光泵浦-探针光谱测量。在这项研究中,我们对汽-液-固生长的SiNW进行了飞秒泵浦-探针测量,以研究NW直径,泵浦和探针极化以及泵浦注量对观察到的动力学的影响,同时将探针波长调整为低于或高于Si中的间接带隙对于较小的NW直径,发现载体可以更快速地松弛到扩展状态和局部状态,这表明表面介导的机制控制着观察到的动力学。光致透射变化的幅度表现出很强的偏振依赖性,表明这些准1D系统中的光学跃迁沿NW轴高度偏振。最后,密度依赖性实验表明,对于上述带隙探针,弛豫时间随光激发载流子密度的增加而降低。然而,当在带隙以下探测时,没有观察到松弛动力学的显着的密度依赖性变化。简而言之,我们的实验揭示了直径,极化和载流子密度对SiNWs中载流子动力学的影响,揭示了控制这些重要纳米系统中载流子弛豫的现象,并为它们在纳米光子应用中的未来应用提供了见识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号