...
首页> 外文期刊>IEEE Journal of Quantum Electronics >Monolithic integration in InGaAs-InGaAsP multiple-quantum-well structures using laser intermixing
【24h】

Monolithic integration in InGaAs-InGaAsP multiple-quantum-well structures using laser intermixing

机译:使用激光混合在InGaAs-InGaAsP多量子阱结构中进行单片集成

获取原文
获取原文并翻译 | 示例
           

摘要

The bandgap of InGaAs-InGaAsP multiple-quantum-well (MQW) material can be accurately tuned by photoabsorption-induced disordering (PAID), using a Nd:YAG laser, to allow lasers, modulators, and passive waveguides to be fabricated from a standard MQW structure. The process relies on optical absorption in the active region of the MQW to produce sufficient heat to cause interdiffusion between the wells and barriers. Bandgap shifts larger than 100 meV are obtainable using laser power densities of around 5 W/spl middot/mm/sup -2/ and periods of illumination of a few minutes to tens of minutes. This process provides an effective way of altering the emission wavelengths of lasers fabricated from a single epitaxial wafer. Blue shifts of up to 160 nm in the lasing spectra of both broad-area and ridge waveguide lasers are reported. The bandgap-tuned lasers are assessed in terms of threshold current density, internal quantum efficiency, and internal losses. The ON/OFF ratios of bandgap-tuned electroabsorption modulators were tested over a range of wavelengths, with modulation depths of 20 dB obtained from material which has been bandgap-shifted by 120 nm, while samples shifted by 80 nm gave modulation depths as high as 27 dB. Single-mode waveguide losses are as low as 5 dB/spl middot/cm/sup -1/ at 1550 mm. Selective-area disordering has been used in the fabrication of extended cavity lasers. The retention of good electrical and optical properties in intermixed material demonstrates that PAID is a promising technique for the integration of devices to produce photonic integrated circuits. A quantum-well intermixing technique using a pulsed laser is also demonstrated.
机译:InGaAs-InGaAsP多量子阱(MQW)材料的带隙可以使用Nd:YAG激光器通过光吸收诱导的无序(PAID)进行精确调谐,以允许激光器,调制器和无源波导由标准制造MQW结构。该过程依赖于MQW有源区域中的光吸收,以产生足够的热量以引起阱和势垒之间的相互扩散。使用大约5 W / spl middot / mm / sup -2 /的激光功率密度以及几分钟到几十分钟的照明周期,可以获得大于100 meV的带隙位移。该过程提供了改变由单个外延晶片制造的激光器的发射波长的有效方式。据报道,在大面积和脊形波导激光器的激光光谱中,蓝移均高达160 nm。带隙调谐激光器根据阈值电流密度,内部量子效率和内部损耗进行评估。带隙调谐的电吸收调制器的开/关比在一定波长范围内进行了测试,从带隙偏移了120 nm的材料中获得了20 dB的调制深度,而偏移了80 nm的样品的调制深度则高达27分贝。在1550毫米处,单模波导损耗低至5 dB / spl中点/ cm / sup -1 /。选择性区域无序已用于扩展腔激光器的制造中。在混合材料中保留良好的电学和光学特性表明,PAID是一种用于集成器件以生产光子集成电路的有前途的技术。还展示了使用脉冲激光的量子阱混合技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号