首页> 外文期刊>IEEE Journal of Quantum Electronics >Design of a MEMS-based microchemical oxygen-iodine laser (ΜCOIL) system
【24h】

Design of a MEMS-based microchemical oxygen-iodine laser (ΜCOIL) system

机译:基于MEMS的微化学氧碘激光器(ΜCOIL)系统的设计

获取原文
获取原文并翻译 | 示例
       

摘要

A design of a microelectromechanical systems (MEMS)-based microscale chemical-oxygen iodine laser (ΜCOIL) system is presented. A mathematical model of the ΜCOIL system, based upon existing macroscale models of the COIL system and related microscale technologies, is formulated and used to predict system performance. The new ΜCOIL concept is comprised of an array of cocurrent gas- and liquid-flow singlet-oxygen generators, which supply a supersonic slit nozzle for Iodine dissociation and excitation, a segment of a macroscale optical cavity, and a Μ-scale pressure-recovery system to maintain low-pressure operation. Reactor, nozzle, optical cavity, and pressure recovery system models are developed individually and integrated into a model of the overall system. The resulting model of the ΜCOIL system is employed to determine the optimal reagent throughputs, reactor dimensions, and operating pressures to maximize output energy density, defined as the output power divided by the total system and reagent weight for a 100 s operating time. Detailed simulation results corresponding to an optimal energy density of 24.6 kJ/kg are presented, in conjunction with energy density values obtained over the entire parameter space studied. Consideration is given to the design of a realizable, integrated ΜCOIL system, for minimum (7.1 kW) and high-power (∼100 kW) systems. Results of the study suggest that the ΜCOIL system could be a superior alternative to existing COIL devices, via reduced system volume and weight and improved reliability and safety.
机译:提出了一种基于微机电系统(MEMS)的微型化学氧碘激光器(ΜCOIL)系统的设计。基于现有的COIL系统宏模型和相关的微尺度技术,建立了ΜCOIL系统的数学模型,并将其用于预测系统性能。新的ΜCOIL概念由一系列并流的气体和液体流动单线态氧气发生器组成,这些发生器提供用于碘离解和激发的超音速狭缝喷嘴,一部分宏观光学腔以及M阶压力恢复系统保持低压运行。反应堆,喷嘴,光学腔和压力恢复系统模型是单独开发的,并已集成到整个系统的模型中。使用ΜCOIL系统的所得模型来确定最佳试剂通量,反应器尺寸和操作压力,以最大程度地提高输出能量密度,定义为输出功率除以整个系统和试剂重量,持续100 s的操作时间。给出了与24.6 kJ / kg的最佳能量密度相对应的详细模拟结果,以及在整个研究参数空间中获得的能量密度值。考虑了针对最小(7.1 kW)和大功率(〜100 kW)系统的可实现的集成ΜCOIL系统的设计。研究结果表明,通过减少系统体积和重量以及提高可靠性和安全性,ΜCOIL系统可以替代现有的COIL设备。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号