首页> 外文期刊>Annales Henri Poincare >From Constructive Field Theory to Fractional Stochastic Calculus. (II) Constructive Proof of Convergence for the Lévy Area of Fractional Brownian Motion with Hurst Index a Î (frac18,frac14){{alpha},{in},(frac{1}{8},frac{1}{4})}
【24h】

From Constructive Field Theory to Fractional Stochastic Calculus. (II) Constructive Proof of Convergence for the Lévy Area of Fractional Brownian Motion with Hurst Index a Î (frac18,frac14){{alpha},{in},(frac{1}{8},frac{1}{4})}

机译:从构造场论到分数阶随机演算。 (II)具有Hurst指数a(frac18,frac14){{alpha},{in},(frac {1} {8},frac {1} {4}的分数布朗运动的Lévy区域的收敛性的构造性证明。 )}

获取原文
           

摘要

Let B = (B 1(t), . . . ,B d (t)) be a d-dimensional fractional Brownian motion with Hurst index α < 1/4, or more generally a Gaussian process whose paths have the same local regularity. Defining properly iterated integrals of B is a difficult task because of the low Hölder regularity index of its paths. Yet rough path theory shows it is the key to the construction of a stochastic calculus with respect to B, or to solving differential equations driven by B. We intend to show in a series of papers how to desingularize iterated integrals by a weak, singular non-Gaussian perturbation of the Gaussian measure defined by a limit in law procedure. Convergence is proved by using “standard” tools of constructive field theory, in particular cluster expansions and renormalization. These powerful tools allow optimal estimates and call for an extension of Gaussian tools such as, for instance, the Malliavin calculus. After a first introductory paper (Magnen and Unterberger in From constructive theory to fractional stochastic calculus. (I) An introduction: rough path theory and perturbative heuristics, 2011), this one concentrates on the details of the constructive proof of convergence for second-order iterated integrals, also known as Lévy area. A summary in French may be found in Unterberger (Mode d’emploi de la théorie constructive des champs bosoniques, avec une application aux chemins rugueux, 2011).
机译:令B =(B 1 (t),..,B d (t))是d维分数的布朗运动,其Hurst指数α<1/4 ,或更笼统地说是高斯过程,其路径具有相同的局部规则性。定义B的正确迭代积分是一项艰巨的任务,因为其路径的Hölder正则性指数较低。然而,粗糙路径理论表明,这是构建关于B的随机演算或求解由B驱动的微分方程的关键。我们打算在一系列论文中展示如何通过弱的奇异非整数来使迭代积分去奇化。 -由法律程序中的限制定义的高斯测度的高斯扰动。通过使用构造场理论的“标准”工具,尤其是集群扩展和重新规范化,可以证明收敛。这些功能强大的工具可实现最佳估计,并需要扩展高斯工具(例如Malliavin微积分)。在第一篇介绍性论文(Magnen和Unterberger,从建设性理论到分数阶随机演算。(I)引言:粗糙路径理论和微扰启发法,2011年)之后,本文重点讨论了二阶收敛性的构造性证明的细节。迭代积分,也称为Lévy区域。可以在Unterberger中找到法文摘要(Mode d'emploi de lathéorie建设性冠军波旁尼克,Avc une application aux chemins rugueux,2011)。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号