首页> 外文期刊>Heat Transfer Engineering >Experimental Study of Heat Transfer in Gas Turbine Blades Using a Transient Inverse Technique
【24h】

Experimental Study of Heat Transfer in Gas Turbine Blades Using a Transient Inverse Technique

机译:瞬态逆向技术对燃气轮机叶片传热的实验研究

获取原文
获取原文并翻译 | 示例
           

摘要

To enhance specific power output and thermal efficiency of gas turbine engines, industry searches for ways to increase the turbine inlet temperatures. Therefore, temperatures of turbine blades increase as well and necessitate active cooling of these components. Experimental design work on such internal cooling schemes is carried out to find acceptable compromises between heat transfer and pressure losses. It is often carried out by using transient thermochromic liquid crystal techniques in combination with Plexiglas models. However, for real turbine blades this experimental technique is inappropriate due to the lack of optical access. Therefore, to study actual turbine blades there is need for development of noninvasive, nondestructive methodologies. This article describes a measurement technique that allows determination of internal heat transfer coefficients of real turbine blades experimentally. Thus, a test rig with a rapidly responding heater was designed to fulfill the requirement of a sudden increase in the air temperature within the cooling passages. The outer surface temperatures were measured using infrared thermography. To estimate the spatial distribution of internal heat transfer coefficients from transient surface temperatures the inverse heat transfer problem was solved. As optimization algorithm the Levenberg-Marquardt method was chosen. Outer surface temperature data was measured for a rectangular reference model with rib turbulators and compared with simultaneously acquired data using the thermochromic liquid crystal technique. It is concluded that the new experimental measurement technique could be used to quantitatively determine internal heat transfer coefficients.
机译:为了提高燃气涡轮发动机的比功率输出和热效率,工业界寻求提高涡轮进口温度的方法。因此,涡轮叶片的温度也升高,并且需要对这些部件进行主动冷却。对这种内部冷却方案进行了实验设计工作,以发现传热和压力损失之间的可接受折衷。它通常通过结合Plexiglas模型使用瞬态热致变色液晶技术来执行。但是,对于实际的涡轮叶片,由于缺乏光学通道,因此该实验技术是不合适的。因此,为了研究实际的涡轮叶片,需要开发非侵入性,非破坏性的方法。本文介绍了一种测量技术,该技术可通过实验确定实际涡轮机叶片的内部传热系数。因此,设计了带有快速响应加热器的测试设备,以满足冷却通道内空气温度突然升高的要求。使用红外热成像法测量外表面温度。为了从瞬态表面温度估算内部传热系数的空间分布,解决了逆传热问题。作为优化算法,选择了Levenberg-Marquardt方法。使用肋状湍流器测量矩形参考模型的外表面温度数据,并使用热致变色液晶技术与同时获取的数据进行比较。结论是,新的实验测量技术可用于定量确定内部传热系数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号