...
首页> 外文期刊>Granular matter >Horizontal pneumatic conveying: a 3d distinct element model
【24h】

Horizontal pneumatic conveying: a 3d distinct element model

机译:卧式气动输送:3D独特元素模型

获取原文
获取原文并翻译 | 示例
           

摘要

Pneumatic conveying is widely used for transporting bulk solids in chemical, process and agricultural industries. It is environmentally friendly, flexible and can be fully automated. But it can also involve high power consumption, wear, abrasion, blockage and particle degradation. Hence understanding the physics can help to optimise design and operation. Conveying in a horizontal pipe involves complex multiphase flows, potentially with lean and dense phase regions, stationary particles and blockage. The Distinct Element Method (DEM) is a powerful tool to study granular dynamics. It models interactions at the particle level and reproduces the assembly physics. This paper presents a 3D DEM model to predict pressure drop, flow-rate and flow patterns in pneumatic conveying. The inter-particle forces are modelled using the spring-dashpot-slider analogy. A novel gas flow model is developed. The pipe is divided into sections. In each section a lean and dense region is determined on a voidage criterion based on particle positions. Given the pressure at the boundaries, the fluid flow is determined assuming steady state conditions. This uses the Ergun equation for the flow through the dense phase and the equations of Wen and Yu for modified single spheres and wall resistance for the lean phase. It uses an iterative algorithm adjusting the fluid flowrate so that the pressure in each section is the same in the dense phase and lean phase and maintaining the boundary pressures. Once the fluid flow profile has been calculated the fluid drag on each particle can be determined. The results compare well with experimental data relating pressure gradient and solid and gas flowrates from Molerus (1993), Molerus (1996). Flow patterns for all the flow regimes, fully suspended flow, strand flow, slug flow, and conveying over stationary layer are observed.
机译:气力输送广泛用于化学,加工和农业工业中的散装固体运输。它是环保,灵活的并且可以完全自动化。但是它也可能涉及高功耗,磨损,磨损,阻塞和颗粒降解。因此,了解物理原理有助于优化设计和操作。在水平管中进行输送涉及复杂的多相流,可能具有贫相和稠密相区,固定颗粒和阻塞。离散元素方法(DEM)是研究粒度动力学的强大工具。它在粒子级别模拟相互作用,并重现装配物理。本文提出了一种3D DEM模型,以预测气动输送中的压降,流量和流型。使用spring-dashpot-slider类比对粒子间的力进行建模。开发了一种新颖的气体流动模型。管道分为多个部分。在每个部分中,根据颗粒位置,根据空隙率标准确定一个稀疏和密集的区域。给定边界压力,在稳态条件下确定流体流量。对于流经致密相的流,使用Ergun方程;对于经过修改的单球体,将Wen和Yu方程用于流变;对于稀相,则使用壁阻力。它使用迭代算法来调节流体流量,以使在密相和稀相中每个部分的压力相同,并保持边界压力。一旦已经计算出流体流动曲线,就可以确定每个颗粒上的流体阻力。结果与来自Molerus(1993),Molerus(1996)的有关压力梯度以及固体和气体流量的实验数据进行了比较。观察到所有流态的流型,完全悬浮的流,股线流,团状流以及在固定层上的输送。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号