首页> 外文期刊>Geophysics >Latest views of the sparse Radon transform
【24h】

Latest views of the sparse Radon transform

机译:稀疏Radon变换的最新视图

获取原文
获取原文并翻译 | 示例
           

摘要

The Radon transform (RT) suffers from the typical problems of loss of resolution and aliasing that arise as a consequence of incomplete information, including limited aperture and discretization. Sparseness in the Radon domain is a valid and useful criterion for supplying this missing information, equivalent somehow to assuming smooth amplitude variation in the transition between known and unknown (missing) data. Applying this constraint while honoring the data can become a serious challenge for routine seismic processing because of the very limited processing time available, in general, per common midpoint. To develop methods that are robust, easy to use and flexible to adapt to different problems we have to pay attention to a variety of algorithms, operator design, and estimation of the hyperparame- ters that are responsible for the regularization of the solution. In this paper, we discuss fast implementations for several varieties of RT in the time and frequency domains. An iterative conjugate gradient algorithm with fast Fourier transform multiplication is used in all cases. To preserve the important property of iterative subspace methods of regularizing the solution by the number of iterations, the model weights are incorporated into the operators. This turns out to be of particular importance, and it can be understood in terms of the singular vectors of the weighted transform. The iterative algorithm is stopped according to a general cross validation criterion for subspaces. We apply this idea to several known implementations and compare results in order to better understand differences between, and merits of, these algorithms.
机译:Radon变换(RT)遭受了分辨率降低和混叠的典型问题,这些问题是由于信息不完整(包括有限的孔径和离散化)而导致的。 Radon域中的稀疏性是提供此缺失信息的有效且有用的标准,等效于假设已知和未知(丢失)数据之间的转换中出现平滑幅度变化。由于通常每个公共中点的可用处理时间非常有限,因此在遵守数据的同时应用此约束可能成为常规地震处理的严峻挑战。为了开发出健壮,易用且灵活的方法来适应不同的问题,我们必须注意负责解决方案正则化的各种算法,操作员设计和超参数估计。在本文中,我们讨论了时域和频域中几种实时RT的快速实现。在所有情况下都使用具有快速傅立叶变换乘法的迭代共轭梯度算法。为了保留迭代子空间方法的重要性质,该迭代子空间方法通过迭代次数对解决方案进行正则化,将模型权重合并到运算符中。事实证明这是特别重要的,并且可以根据加权变换的奇异矢量来理解。根据用于子空间的通用交叉验证标准,停止迭代算法。我们将此思想应用于几种已知的实现方式并比较结果,以便更好地理解这些算法之间的区别和优点。

著录项

  • 来源
    《Geophysics》 |2003年第1期|p.386-399|共14页
  • 作者单位

    University of British Columbia, Department of Earth and Ocean Sciences, 2219 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 地球物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号