...
首页> 外文期刊>Geophysical Prospecting >Estimating azimuthal stress-induced P-wave anisotropy from S-wave anisotropy using sonic log or vertical seismic profile data
【24h】

Estimating azimuthal stress-induced P-wave anisotropy from S-wave anisotropy using sonic log or vertical seismic profile data

机译:使用声波测井或垂直地震剖面数据根据S波各向异性估算方位角应力诱发的P波各向异性

获取原文
获取原文并翻译 | 示例
           

摘要

Most sedimentary rocks are anisotropic, yet it is often difficult to accurately incorporate anisotropy into seismic workflows because analysis of anisotropy requires knowledge of a number of parameters that are difficult to estimate from standard seismic data. In this study, we provide a methodology to infer azimuthal P-wave anisotropy from S-wave anisotropy calculated from log or vertical seismic profile data. This methodology involves a number of steps. First, we compute the azimuthal P-wave anisotropy in the dry medium as a function of the azimuthal S-wave anisotropy using a rock physics model, which accounts for the stress dependency of seismic wave velocities in dry isotropic elastic media subjected to triaxial compression. Once the P-wave anisotropy in the dry medium is known, we use the anisotropic Gassmann equations to estimate the anisotropy of the saturated medium. We test this workflow on the log data acquired in the North West Shelf of Australia, where azimuthal anisotropy is likely caused by large differences between minimum and maximum horizontal stresses. The obtained results are compared to azimuthal P-wave anisotropy obtained via orthorhombic tomography in the same area. In the clean sandstone layers, anisotropy parameters obtained by both methods are fairly consistent. In the shale and shaly sandstone layers, however, there is a significant discrepancy between results since the stress-induced anisotropy model we use is not applicable to rocks exhibiting intrinsic anisotropy. This methodology could be useful for building the initial anisotropic velocity model for imaging, which is to be refined through migration velocity analysis.
机译:大多数沉积岩是各向异性的,但是通常很难将各向异性准确地整合到地震工作流程中,因为各向异性分析需要了解许多难以从标准地震数据中估计的参数。在这项研究中,我们提供了一种从对数或垂直地震剖面数据计算出的S波各向异性中推断出P波方位角各向异性的方法。该方法涉及许多步骤。首先,我们使用岩石物理学模型计算干燥介质中的方位角P波各向异性与S方位角各向异性的函数,该函数解释了干法各向同性弹性介质受到三轴压缩后地震波速度的应力依赖性。一旦知道了干燥介质中的P波各向异性,我们就可以使用各向异性的Gassmann方程来估算饱和介质的各向异性。我们在澳大利亚西北大陆架上获得的测井数据上测试了该工作流程,那里的方位各向异性可能是由最小和最大水平应力之间的巨大差异引起的。将获得的结果与在同一区域中通过正交各向异性层析成像获得的方位P波各向异性进行比较。在清洁的砂岩层中,两种方法获得的各向异性参数是相当一致的。然而,在页岩和页岩砂岩层中,结果之间存在显着差异,因为我们使用的应力感应各向异性模型不适用于表现出固有各向异性的岩石。该方法对于建立用于成像的初始各向异性速度模型可能是有用的,该模型将通过迁移速度分析加以完善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号