...
首页> 外文期刊>Expert systems with applications >Interpretable vs. noninterpretable machine learning models for data-driven hydro-climatological process modeling
【24h】

Interpretable vs. noninterpretable machine learning models for data-driven hydro-climatological process modeling

机译:可解释的与非互换机器学习模型进行数据驱动水力 - 气候学过程建模

获取原文
获取原文并翻译 | 示例
           

摘要

Due to their enhanced predictive capabilities, noninterpretable machine learning (ML) models (e.g. deep learning) have recently gained a growing interest in analyzing and modeling earth & planetary science data. However, noninterpretable ML models are often treated as ?black boxes? by end-users, which could limit their applicability in critical decision making processes. In this paper, we compared the predictive capabilities of three interpretable ML models with three noninterpretable ML models to answer the overarching question: Is it essential to use noninterpretable ML models for enhanced model predictions from hydro-climatological datasets? The ML model development and comparative analysis were performed using measured climate data and synthetic reference crop evapotranspiration (ETo) data, with varying levels of missing values, from five weather stations across the karstic Edwards aquifer region in semi-arid south-central Texas. Our analysis revealed that interpretable tree based ensemble models produce comparable results to noninterpretable deep learning models on structured hydro-climatological datasets. We showed that the tree-based ensemble model is also capable of imputing varying levels of missing climate data at the weather stations, employing the newly developed sequential transfer-learning technique. We applied an explainable machine learning (eXML) framework to quantify the global order of importance of hydro-climatic (predictor) variables on ETo, while highlighting the local dependencies and interactions amongst the predictors and ETo. The eXML framework also revealed the inflection points of the climate variables at which the transition from low to high daily ETo rates occur. The ancillary explainability of ML models are expected to increase users? confidence and support any future decision-making process in water resource management.
机译:由于其增强的预测能力,不可替换的机器学习(ML)模型(例如,深度学习)最近获得了对地球和行星科学数据的分析和建模的兴趣日益令人兴趣。但是,不合适的ML模型通常被视为?黑匣子?通过最终用户,这可能会限制其在关键决策过程中的适用性。在本文中,我们将三个可解释的ML模型的预测能力与三种不合理的ML模型进行了比较,以回答总体问题:使用非互斥的ML模型对于来自水力 - 气候数据集的增强模型预测是必要的吗?使用测量的气候数据和合成参考作物蒸散(ETO)数据进行ML模型开发和比较分析,其中缺失价值水平的不同程度的缺失值,来自德克萨斯州半干旱南部的半干旱地区。我们的分析显示,可解释的树基组合模型对结构化水力 - 气候数据集的不可替换深层学习模型产生了可比的结果。我们认为,基于树的集合模型还能够在气象站处抵御缺失的气候数据水平,采用新开发的顺序转移学习技术。我们应用了可解释的机器学习(EXML)框架,以量化水力气候(预测器)变量对ETO的全局秩序,同时突出显示预测器和ETO之间的本地依赖性和交互。 EXML框架还揭示了气候变量的拐点,在该气候变量的过渡发生到高每日ETO率发生。预计ML模型的辅助解释性会增加用户?信心并支持任何未来的水资源管理决策过程。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号