首页> 外文期刊>European transactions on telecommunications >Mutual Clock Synchronization in Global Digital Communication Networks
【24h】

Mutual Clock Synchronization in Global Digital Communication Networks

机译:全球数字通信网络中的相互时钟同步

获取原文
获取原文并翻译 | 示例
           

摘要

There are numerous synchronization methodologies available for consideration in solving the problem of network synchronization in digital communication networks. They include: independent clocks, pulse stuffing, elastic stores, master-slave hierarchical, time reference distribution, mutual synchronization, etc. This paper considers the network synchronization performance achievable using the method of mutual clock synchronization observed first by Christiaan Huygens in 1665. Network synchronization performance metrics studied include: nodal timing accuracy, timing jitter, slip rate, time interval between slips, probability of loss of synchronization. These metrics are shown to depend upon the distance (range) between clocks, ranging error, clock stability, nodal phase error processing bandwidth, data rate, signal-to-noise ratio and network connectivity. In this regard, the mutual synchronization performance achievable with long wavelength biological rhythms and electric power system rhythms is compared with the performance achievable using short wavelength rhythms required in wideband and broadband digital communications networks. The results are further applied to the problem of synchronizing a satellite communications network. When intrasatellite communication crosslinks (links between satellites in the same orbital plane) are used in a constellation of communication satellites, it is shown that the maximum data rate, the network connectivity and the constellation altitude drive the achievable network synchronization performance; the latter is set by technological limitations due to clock frequency stability, the maximum range between satellites and the minimum ranging error achievable by the ranging system. In this sense, low Earth orbits (LEO) are preferred over geosynchronous (GEO)Earth orbits. The theory is also applied to the Teledesic and Iridium networks.
机译:解决数字通信网络中的网络同步问题时,可以考虑使用许多同步方法。它们包括:独立时钟,脉冲填充,弹性存储,主从分层结构,时间参考分布,相互同步等。本文考虑使用克里斯蒂安·惠更斯在1665年首先观察到的相互时钟同步方法可以实现的网络同步性能。网络研究的同步性能指标包括:节点定时精度,定时抖动,滑差率,滑差之间的时间间隔,丢失同步的可能性。这些指标显示取决于时钟之间的距离(范围),测距误差,时钟稳定性,节点相位误差处理带宽,数据速率,信噪比和网络连接性。在这方面,将长波长生物节律和电力系统节律可实现的相互同步性能与宽带和宽带数字通信网络中所需的短波长节律可实现的性能进行了比较。结果进一步应用于同步卫星通信网络的问题。当在通信卫星星座中使用卫星内通信交叉链路(同一轨道平面中的卫星之间的链路)时,可以看出,最大数据速率,网络连接性和星座高度驱动着可实现的网络同步性能;后者是由于时钟频率稳定性,卫星之间的最大距离以及测距系统可达到的最小测距误差而受到技术限制的。从这个意义上讲,低地球轨道(LEO)比地球同步(GEO)地球轨道优先。该理论也适用于Teledesic和Iridium网络。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号