首页> 外文期刊>Environmental Science & Technology >Investigating ebullition in a sand column using dissolved gas analysis and reactive transport modeling
【24h】

Investigating ebullition in a sand column using dissolved gas analysis and reactive transport modeling

机译:使用溶解气体分析和反应传输模型研究砂柱中的沸腾

获取原文
获取原文并翻译 | 示例
       

摘要

Ebullition of gas bubbles through saturated sediments can enhance the migration of gases through the subsurface, affect the rate of biogeochemical processes, and potentially enhance the emission of important greenhouse gases to the atmosphere. To better understand the parameters controlling ebullition, methanogenic conditions were produced in a column experiment and ebullition through the column was monitored and quantified through dissolved gas analysis and reactive transport modeling. Dissolved gas analysis showed rapid transport of CH4 vertically through the column at rates several times faster than the bromide tracer and the more soluble gas CO2, indicating that ebullition was the main transport mechanism for CH4. An empirically derived formulation describing ebullition was integrated into the reactive transport code MIN3P allowing this process to be investigated on the REV scale in a complex geochemical framework. The simulations provided insights into the parameters controlling ebullition and show that, over the duration of the experiment, 36% of the CH4 and 19% of the CO2 produced were transported to the top of the column through ebullition.
机译:通过饱和沉积物汽化气泡可以增强气体通过地下的迁移,影响生物地球化学过程的速率,并有可能增加重要温室气体向大气的排放。为了更好地理解控制沸腾的参数,在色谱柱实验中产生了产甲烷条件,并通过溶解气体分析和反应迁移模型对通过色谱柱的沸腾进行了监测和定量。溶解气体分析表明,垂直穿过色谱柱的CH4的快速传输速率比溴化物示踪剂和更易溶解的气体CO2快几倍,这表明沸腾是CH4的主要传输机制。根据经验得出的描述沸腾的配方已被整合到反应性运输代码MIN3P中,从而可以在复杂的地球化学框架中以REV规模研究此过程。这些模拟提供了对控制沸腾的参数的见解,并表明,在实验过程中,产生的36%的CH4和19%的CO2通过沸腾被输送到了色谱柱的顶部。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号