首页> 外文期刊>Environmental Science & Technology >Inhibition of Photosynthesis by a Fluoroquinolone Antibiotic
【24h】

Inhibition of Photosynthesis by a Fluoroquinolone Antibiotic

机译:氟喹诺酮类抗生素对光合作用的抑制作用

获取原文
获取原文并翻译 | 示例
           

摘要

Recent microcosm studies have revealed that fluoroquinolone (FQ) antibiotics can have ecotoxicological impacts on photosynttietic organisms, but little is known about the mechanisms of toxicity. We employed a combination of modeling and experimental techniques to explore how FQs may have these unintended secondary toxic effects. Structure-activity analysis revealed that the quinolone ring and secondary amino group typically present in FQ antibiotics may mediate their action as quinone site inhibitors in photosystem II (PS-II), a key enzyme in photosynthetic electron transport. Follow-up molecular simulations involving nalidixic acid (Naldx), a nonfluorinated quinolone with a demonstrated adverse impact on photosynthesis, and ciprofloxacin (Cipro), the most commonly used FQ antibiotic, showed that both may interfere stereochemically with the catalytic activity of reaction center II (RC-III, the pheophytin-quinone-type center present in PS-II. Naldx can occupy the same binding site as the secondary quinone acceptor (Q_B) in RC-II and interact with amino acid residues required for the enzymatic reduction of Q_b. Cipro binds in a somewhat different manner, suggesting a different mechanism of interference. Fluorescence induction kinetics, a common method of screening for PS-II inhibition, recorded for photoexcited thylakoid membranes isolated from Cipro-exposed spinach chloroplasts, indicated that Cipro interferes with the transfer of energy from excited antenna chlorophyll molecules to the reaction center in RC-II ([Cipro] ≥ 5 μM in vitro and ≥10 μM in vivo) and thus delays the kinetics of photoreduction of the primary quinone acceptor (Q_a; [Cipro] ≥ 0.6 μM in vitro). Spinach plants exposed to Cipro exhibited severe growth inhibition characterized by a decrease in both the synthesis of leaves and growth of the roots ([Cipro] ≥ 0.5 μM in vivo). Our results thus demonstrate that Cipro and related FQ antibiotics may interfere with photosynthetic pathways, in addition to causing morphological deformities in higher plants.
机译:最近的微观研究表明,氟喹诺酮(FQ)抗生素对光合生物具有生态毒理学影响,但对毒性机理了解甚少。我们采用了建模和实验技术相结合的方法来探索FQ可能具有这些意外的次级毒性作用。结构活性分析表明,FQ抗生素中通常存在的喹诺酮环和仲氨基可能作为光合电子传递的关键酶光系统II(PS-II)中的醌位点抑制剂而介导其作用。后续分子模拟涉及萘啶酮酸(Naldx)(一种对光合作用表现出不利影响的非氟化喹诺酮)和环丙沙星(Cipro)(一种最常用的FQ抗生素),表明两者都可能在立体化学上干扰反应中心II的催化活性。 (RC-III,存在于PS-II中的脱镁叶绿素-醌型中心。Naldx可以与RC-II中的仲醌受体(Q_B)占据相同的结合位点,并与酶促还原Q_b所需的氨基酸残基相互作用Cipro的结合方式略有不同,表明存在不同的干扰机理,记录了从暴露于Cipro的菠菜叶绿体中分离的光激发类囊体膜的荧光诱导动力学(一种筛选PS-II抑制的常用方法)表明,Cipro干扰了将能量从受激天线的叶绿素分子转移到RC-II中的反应中心(体外[Cipro]≥5μM,体内≥10μM)和因此延迟了伯醌受体的光还原动力学(Q_a; [Cipro]体外≥0.6μM)。暴露于Cipro的菠菜植物表现出严重的生长抑制作用,其特征在于叶片合成和根部生长均减少(体内[Cipro]≥0.5μM)。因此,我们的结果表明,Cipro和相关的FQ抗生素除了会引起高等植物的形态畸变外,还可能干扰光合途径。

著录项

  • 来源
    《Environmental Science & Technology》 |2010年第4期|1444-1450|共7页
  • 作者单位

    Molecular Toxicology Group, University of California at Berkeley, Berkeley, California 94720 Department of Geosciences, 158 Guyot Hall, Princeton University, Princeton, NJ 08540;

    Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, California 94720;

    Molecular Toxicology Group, University of California at Berkeley, Berkeley, California 94720 Division of Ecosystem Sciences, University of California at Berkeley, Berkeley, California 94720;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号