首页> 外文期刊>Environmental Science & Technology >Competitive Microbially and Mn Oxide Mediated Redox Processes Controlling Arsenic Speciation and Partitioning
【24h】

Competitive Microbially and Mn Oxide Mediated Redox Processes Controlling Arsenic Speciation and Partitioning

机译:竞争性微生物和氧化锰介导的氧化还原过程,控制砷的形态和分配

获取原文
获取原文并翻译 | 示例
           

摘要

The speciation and partitioning of arsenic (As) in surface and subsurface environments are controlled, in part, by redox processes. Within soils and sediments, redox gradients resulting from mass transfer limitations lead to competitive reduction-oxidation reactions that drive the fete of As. Accordingly, the objective of this study was to determine the fate and redox cycling of As at the interface of birnessite (a strong oxidant in soil with a nominal formula of MnOw where x w 2) and dissimilatory As(V)-reducing bacteria (strong reductant). Here, we investigate As reduction-oxidation dynamics in a diffusively controlled system using a Donnan reactor where bimessite and Shewanella sp. ANA-3 are isolated by a semi-permeable membrane through which As migrates. Arsenic(lll) injected into the reaction cell containing birnessite is rapidly oxidized to As(V). Arsenic(V) diffusing into the Shewanella chamber is then reduced to As(lll), which subsequently diffuses back to the birnessite chamber, undergoing oxidation, and establishing a continuous cycling of As. However, we observe a rapid decline in the rate of As(ni) oxidation owing to passivation of the birnessite surface. Modeling and experimental results show that high [Mn(II)] combined with increasing [CO32] from microbial respiration leads to the precipitation of rhodochrosite, which eventually passivates the Mn oxide surface, inhibiting further As(lll) oxidation. Our results show that despite the initial capacity of birnessite to rapidly oxidize As(lll), the synergistic effect of intense As(V) reduction by microorganisms and the buildup of reactive metabolites capable of passivating reactive mineral surfaces-here, birnessite-will produce (bio)geochemical conditions outside of those based on thermodynamic predictions.
机译:表面和地下环境中砷的形态和分配部分受氧化还原过程控制。在土壤和沉积物中,由于传质限制而产生的氧化还原梯度导致竞争性还原-氧化反应,从而驱动As的形成。因此,本研究的目的是确定在水钠锰矿(一种强氧化剂,名义上为MnOw,其中xw 2的土壤中的强氧化剂)和异化As(V)还原菌(强还原剂)界面的As的命运和氧化还原循环。 )。在这里,我们研究使用Donnan反应器(其中Bimessite和Shewanella sp。)在扩散控制系统中的As还原氧化动力学。 ANA-3通过半透膜分离,As迁移通过半透膜。注入到含有水钠锰矿的反应池中的砷(III)被迅速氧化为As(V)。然后,扩散到希瓦氏菌室内的砷(V)被还原为砷(III),随后扩散回到水钠锰矿室内,进行氧化,并形成连续的砷循环。但是,我们观察到由于水钠锰矿表面的钝化,As(ni)氧化速率迅速下降。建模和实验结果表明,高[Mn(II)]与微生物呼吸中增加的[CO32]结合会导致菱锰矿的沉淀,最终钝化Mn氧化物表面,进一步抑制As(III)的氧化。我们的结果表明,尽管水钠锰矿具有迅速氧化As(III)的初始能力,但微生物强烈还原As(V)和产生能够钝化反应性矿物表面的反应性代谢产物的协同作用(此处,水钠锰矿将产生(基于热力学预测的生物地球化学条件。

著录项

  • 来源
    《Environmental Science & Technology》 |2011年第13期|p.5572-5579|共8页
  • 作者单位

    Department of Environmental & Earth System Science, Stanford University, Stanford, California 94305, United States;

    Department of Environmental & Earth System Science, Stanford University, Stanford, California 94305, United States;

    Department of Environmental & Earth System Science, Stanford University, Stanford, California 94305, United States;

    Department of Environmental & Earth System Science, Stanford University, Stanford, California 94305, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号