首页> 外文期刊>Environmental Science & Technology >Nanoscale Stnicture of the Cell Wall Protecting Cellulose from Enzyme Attack
【24h】

Nanoscale Stnicture of the Cell Wall Protecting Cellulose from Enzyme Attack

机译:纳米结构的细胞壁保护纤维素免受酶的攻击

获取原文
获取原文并翻译 | 示例
       

摘要

The cell wall structure protects cellulose from enzymatic attack and its successive fermentation. The nature of this protection consists in the very complex macroscopic and microscopic structure of cell wall that limits transport Explaining this kind of protection is critical in future research to improve cell polymer availability for enzymatic attack. This research shows that the complete description of the cell wall topography at a nanoscale level allows a mechanistic understanding of cellulose protection. For this purpose, we used gas adsorption methods (CO_2 at 273 K and N_2 at 77 K) to detect mesoporosity (pore size of 1.5-30 nm diameter, MeS) and microporosity (pore size of 0.3-1.5 nm diameter, MiS) of the cell wall of five energy crops, i.e., giant cane, rivet wheat straw, miscanthus, proso millet, and sorghum. The presence of both hemicelluloses in the spaces between cellulose fibrils and the unhydrolyzable and highly cross-linked lignocarbohydrate complex (LCC) determines a microporous (80% pores having diameters below 0.8 nm) structure of the cell wall that prevents the cellulase enzymes from coming into direct contact with the cellulose, as their sizes exceed the cell wall pore size. On the other hand, the removal of the hemicelluloses and of the LCC complex determines a reduction of the MiS and an increase of the available surface for enzymatic attack, i.e., pores >5 nm diameter. This was confirmed by the good negative (r = -0.87, P < 0.001, n=11)andposiuve(r=0.78,P< 0.005, n=11)correlations found for microporosity and mesoporosity (pores of diameters >5 nm), respectively, vs the glucose production, by cellulase enzyme attack in specific enzymatic hydrolysis tests performed on biomass samples.
机译:细胞壁结构可保护纤维素免受酶攻击及其后续发酵。这种保护的本质在于细胞壁的非常复杂的宏观和微观结构,从而限制了运输。解释这种保护对于未来研究中提高酶攻击的细胞聚合物利用率至关重要。这项研究表明,在纳米水平上完整描述细胞壁的形貌可以使人们对纤维素的保护机制有所了解。为此,我们使用了气体吸附方法(273 K处的CO_2和77 K处的N_2)来检测碳纳米管的介孔(孔径为1.5-30 nm的直径,MeS)和微孔率(孔径为0.3-1.5 nm的直径,MiS)。五种能源作物的细胞壁,即巨型甘蔗,铆钉小麦秸秆,桔梗,小米和高粱。纤维素原纤维和不可水解且高度交联的木质碳水化合物复合物(LCC)之间的空间中都存在半纤维素,这决定了细胞壁的微孔结构(80%的孔的直径低于0.8 nm)阻止了纤维素酶的进入与纤维素直接接触,因为它们的大小超过了细胞壁的孔径。另一方面,半纤维素和LCC复合物的去除决定了MiS的减少和酶攻击可用表面的增加,即,孔径> 5nm。良好的负相关(r = -0.87,P <0.001,n = 11)和正相关(r = 0.78,P <0.005,n = 11)与微孔和中孔相关(直径> 5 nm的孔),证实了这一点,在生物质样品上进行的特定酶水解试验中,纤维素酶攻击分别对葡萄糖产生的影响。

著录项

  • 来源
    《Environmental Science & Technology》 |2011年第3期|p.1107-1113|共7页
  • 作者单位

    Gruppo RICICIA, Dipartimento di Produzione Vegetale, Universita degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy;

    rnGruppo RICICIA, Dipartimento di Produzione Vegetale, Universita degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy;

    rnGruppo RICICIA, Dipartimento di Produzione Vegetale, Universita degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy;

    rnCentra Ricerche ENEA, Casaccia, Via Anguillarese 301, 00123 S. Maria di Galeria, Roma, Italy;

    rnGruppo RICICIA, Dipartimento di Produzione Vegetale, Universita degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy;

    rnGruppo RICICIA, Dipartimento di Produzione Vegetale, Universita degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号