...
首页> 外文期刊>Environmental Science & Technology >Maximizing Productivity and Reducing Environmental Impacts of Full-Scale Algal Production through Optimization of Open Pond Depth and Hydraulic Retention Time
【24h】

Maximizing Productivity and Reducing Environmental Impacts of Full-Scale Algal Production through Optimization of Open Pond Depth and Hydraulic Retention Time

机译:通过优化开池深度和水力停留时间,最大程度地提高藻类大规模生产的生产率并减少环境影响

获取原文
获取原文并翻译 | 示例
           

摘要

The ability to dynamically control algal raceway ponds to maximize biomass productivity and reduce environmental impacts (e.g., land and water use) with consideration of local constraints (e.g., water availability and climatic conditions) is an important consideration in algal biotechnology. This paper presents a novel optimization strategy that seeks to maximize growth (i.e., optimize land use), minimize respiration losses, and minimize water demand through regular adjustment of pond depth and hydraulic retention time (HRT) in response to seasonal changes. To evaluate the efficiency of this strategy, algal productivity and water demand were simulated in five different climatic regions. In comparison to the standard approach (constant and location-independent depth and HRT), dynamic control of depth and HRT was shown to increase productivity by 0.6-9.9% while decreasing water demand by 10-61% depending upon the location considered (corresponding to a decrease in the water footprint of 19-62%). Interestingly, when the fact that the water demand was limited to twice the local annual rainfall was added as a constraint, higher net productivities were predicted in temperate and tropical climates (15.7 and 16.7 g m~(-2) day~(-1), respectively) than in Mediterranean and subtropical climates (13.0 and 9.7 g m~(-2) day~(-1), respectively), while algal cultivation was not economically feasible in arid climates. Using dynamic control for a full-scale operation by adjusting for local climatic conditions and water constraints can notably affect algal productivity. It is clear that future assessments of algal cultivation feasibility should implement locally optimized dynamic process control.
机译:在藻类生物技术中,重要的考虑因素是动态控制藻类水道池塘以最大程度提高生物量生产力并减少环境影响(例如土地和水的使用)的能力,这是藻类生物技术中的重要考虑因素。本文提出了一种新颖的优化策略,旨在通过根据季节变化定期调整池塘深度和水力停留时间(HRT)来最大化增长(即优化土地利用),最小化呼吸损失并最小化需水量。为了评估该策略的效率,在五个不同的气候区域模拟了藻类生产力和需水量。与标准方法(恒定且与位置无关的深度和HRT)相比,根据所考虑的位置,对深度和HRT的动态控制显示出生产率提高了0.6-9.9%,而需水量减少了10-61%(对应于水足迹减少了19-62%)。有趣的是,当增加了用水需求被限制为当地年降雨量的两倍这一事实时,预计在温带和热带气候(15.7和16.7 gm〜(-2)天〜(-1),分别比地中海和亚热带气候(分别为13.0和9.7 gm〜(-2)天〜(-1))高,而在干旱气候下藻类种植在经济上不可行。通过调整局部气候条件和水约束条件,对全规模操作使用动态控制会显着影响藻类生产力。显然,未来对藻类种植可行性的评估应实施局部优化的动态过程控制。

著录项

  • 来源
    《Environmental Science & Technology》 |2016年第7期|4102-4110|共9页
  • 作者单位

    School of Engineering and Advanced Technology, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand,INRIA BIOCORE, BP 93, 06902 Sophia Antipolis Cedex, France;

    School of Engineering and Advanced Technology, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand;

    School of Engineering and Advanced Technology, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号