首页> 外文期刊>Environmental Science & Technology >Bubble-Driven Detachment of Bacteria from Confined Microgeometries
【24h】

Bubble-Driven Detachment of Bacteria from Confined Microgeometries

机译:密闭微几何中气泡驱动的细菌分离

获取原文
获取原文并翻译 | 示例
       

摘要

Moving air-liquid interfaces, for example, bubbles, play a significant role in the detachment and transport of colloids and microorganisms in confined systems as well as unsaturated porous media. Moreover, they can effectively prevent and/or postpone the development of mature biofilms on surfaces that are colonized by bacteria. Here we demonstrate the dynamics and quantify the effectiveness of this bubble-driven detachment process for the bacterial strain Staphylococcus aureus. We investigate the effects of interface velocity and geometrical factors through microfluidic experi-ments that mimic some of the confinement features of pore-scale geometries. Depending on the bubble velocity U, at least three different flow regimes are found. These operating flow regimes not only affect the efficiency of the detachment process but also modify the final distribution of the bacteria on the surface. We organize our results according to the capillary number, Ca =μU/γ, where µ and γ are the viscosity and the surfece tension, respectively. Bubbles at very low velocities, corresponding to capillary numbers Ca < 5 × 10~(-5), exhibit detachment efficiencies of up to 80% at the early stage of bacterial adhesion. In contrast, faster bubbles at capillary numbers Ca > 10~(-3), have lower detachment efficiencies and cause significant nonuniformities in the final distribution of the cells on the substrate. This effect is associated with the fonnation of a thin liquid film around the bubble at higher Ca. In general, at higher bubble velocities bacterial cells in the corners of the geometry are less influenced by the bubble passage compared to the central region.
机译:移动的气液界面(例如气泡)在受限系统以及不饱和多孔介质中胶体和微生物的分离和运输中起着重要作用。而且,它们可以有效地防止和/或推迟在细菌定殖的表面上成熟生物膜的形成。在这里,我们展示了动力学,并量化了细菌驱动的金黄色葡萄球菌的气泡驱动分离过程的有效性。我们通过模拟微孔尺度几何形状的某些限制特征的微流体实验研究了界面速度和几何因素的影响。根据气泡速度U,发现至少三种不同的流动状态。这些工作流态不仅影响分离过程的效率,而且还改变了细菌在表面上的最终分布。我们根据毛细管数Ca =μU/γ整理结果,其中µ和γ分别为粘度和表面张力。在细菌粘附的早期,气泡的速度非常低,对应于毛细管数Ca <5×10〜(-5),其分离效率高达80%。相反,毛细管数为Ca> 10〜(-3)的较快气泡具有较低的分离效率,并导致细胞在基质上最终分布的明显不均匀性。此效应与较高Ca下气泡周围形成薄液膜有关。通常,在较高的气泡速度下,与中心区域相比,几何形状角落的细菌细胞受气泡通过的影响较小。

著录项

  • 来源
    《Environmental Science & Technology》 |2017年第3期|1340-1347|共8页
  • 作者单位

    Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States;

    Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States;

    Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States;

    Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号