...
首页> 外文期刊>Environmental Science & Technology >Graphene Oxide-Induced pH Alteration, Iron Overload, and Subsequent Oxidative Damage in Rice (Oryza sativa L): A New Mechanism of Nanomaterial Phytotoxicity
【24h】

Graphene Oxide-Induced pH Alteration, Iron Overload, and Subsequent Oxidative Damage in Rice (Oryza sativa L): A New Mechanism of Nanomaterial Phytotoxicity

机译:氧化石墨烯诱导的水稻pH改变,铁超载及随后的氧化损伤:纳米材料植物毒性的新机制

获取原文
获取原文并翻译 | 示例
           

摘要

The mechanism of graphene-based nanomaterial (GBM)-induced phytotoxicity and its association with the GBM physicochemical properties are not yet fully understood. The present study compared the effects of graphene oxide (GO) and reduced GO (rGO) on rice seedling growth under hydroponic conditions for 3 weeks. GO at 100 and 250 mg/L reduced shoot biomass (by 25 and 34%, respectively) and shoot elongation (by 17 and 43%, respectively) and caused oxidative damage, while rGO exhibited no overt effect except for the enhancement of the antioxidant enzyme activities, suggesting that the surface oxygen content is a critical factor affecting the biological impacts of GBMs. GO treatments (100 and 250 mg/L) enhanced the iron (Fe) translocation and caused excessive Fe accumulation in shoots (2.2 and 3.6 times higher than control), which was found to be the main reason for the oxidative damage in shoots. GO-induced acidification of the nutrient solution was the main driver for the Fe overload in plants. In addition to the antioxidant regulators, the plants triggered other pathways to defend against the Fe toxicity via downregulation of the Fe transport associated metabolites (mainly coumarins and flavonoids). Plant root exudates facilitated the reduction of toxic GO to nontoxic rGO, acting as another route for plant adaption to GO-induced phytotoxicity. This study provides new insights into the mechanism of the phytotoxicity of GBMs. It also provides implications for the agricultural application of GBM that the impacts of GBMs on the uptake of multiple nutrients in plants should be assessed simultaneously and reduced forms of GBMs are preferential to avoid toxicity.
机译:石墨烯基纳米材料(GBM)诱导的植物毒性的机理及其与GBM物理化学性质的关系尚未完全了解。本研究比较了在水培条件下3周氧化石墨烯(GO)和还原GO(rGO)对水稻幼苗生长的影响。 100和250 mg / L的GO会降低枝条生物量(分别降低25%和34%)和枝条伸长率(分别降低17%和43%)并引起氧化损伤,而rGO除增强抗氧化剂作用外没有其他明显的作用酶活性,表明表面氧含量是影响GBMs生物学影响的关键因素。 GO处理(100和250 mg / L)增强了铁(Fe)的转运,并导致枝条中铁的过量积累(比对照高2.2和3.6倍),这被认为是枝条氧化损伤的主要原因。 GO诱导的营养液酸化是植物体内铁超载的主要驱动力。除抗氧化剂调节剂外,植物还通过下调铁转运相关代谢产物(主要是香豆素和类黄酮)触发了其他途径来防御铁毒性。植物根系分泌物有助于将有毒的GO还原为无毒的rGO,这是植物适应GO诱导的植物毒性的另一种途径。这项研究为GBMs的植物毒性机理提供了新的见解。这也为GBM的农业应用提供了启示,GBM对植物中多种养分吸收的影响应同时进行评估,而GBM的减少形式应优先避免毒性。

著录项

  • 来源
    《Environmental Science & Technology》 |2020年第6期|3181-3190|共10页
  • 作者单位

    Key Laboratory for Biological Effects of Nanomaterials and Nanosafety Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China School of Geography Earth and Environmental Science University oj Birmingham B15 2TT Birmingham U.K.;

    School of Geography Earth and Environmental Science University of Birmingham BIS 2TT Birmingham UK;

    Key Laboratory for Biological Effects of Nanomatertals and Nanosafety Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China;

    Institute of Environmental Sciences (CML) Leiden University 2300 RA Leiden Netherlands;

    School of Geography Earth and Environmental Science University of Birmingham B15 2TT Birmingham U.K.;

    Key Laboratory for Biological Effects of Nanomaterials and Nanosafety Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号