首页> 外文期刊>Environmental Monitoring and Assessment >Structural insights on bioremediation of poh cyclic aromatic hydrocarbons using microalgae: a modelling-based computational study
【24h】

Structural insights on bioremediation of poh cyclic aromatic hydrocarbons using microalgae: a modelling-based computational study

机译:使用微藻类对Poh环状芳香烃进行生物修复的结构见解:基于模型的计算研究

获取原文
获取原文并翻译 | 示例
           

摘要

Research on bioremediation of polycyclic aromatic hydrocarbons (PAHs) has established that several remediating microbial species are capable of degrading only low molecular weight (LMW)-PAHs, whereas high molecular weight (HMW)-PAHs are hardly degradable. In the present study, the efficiency of degradation of both LMW and HMW-PAHs by cytochrome P450 monooxygenase (CYP) of microalgae was studied. CYP have a key role in the detoxification of xenobiotics. So far, the structure of CYP in microalgae is not predicted; the protein structure was constructed by molecular modelling in the current study using the available template of microalgal CYP. Modelled microalgae 3D structures were docked against 38 different PAH compounds, and the information regarding the interaction between protein and PAHs viz. binding sites along with mode of interactions was investigated. We report that CYP from the microalgae Haematococcus pluvialis and Parachlorella kessleri was found to possess broad oxidising capability towards both LMW and HMW-PAHs. P kessleri showed a least value with extra precision glide score of -10.23 and glide energy of -23.48 kcal/mol. PAHs bind to CYP active sites at Lys (69), Tip (96), Gln (397) and Arg (398) through intermolecular hydrogen bonding. Also, study revealed that PAHs interacted with CYP active sites through inter-molecular hydrogen bonding. hydrophobic bonding, pi-pi interactions and van der waals interactions. Thus, structural elucidation study confirms that microalgae Parachlorella kessleri have the capacity to remediate HMW more efficiently than other microorganisms. Our results provide a framework in understanding the structure and the possible binding sites of CYP protein for degradation of PAH and that could be a screening tool in identifying the phycoremediation potential.
机译:对多环芳烃(PAH)进行生物修复的研究已经确定,几种修复性微生物仅能降解低分子量(LMW)-PAH,而高分子量(HMW)-PAH则几乎不可降解。在本研究中,研究了通过微藻的细胞色素P450单加氧酶(CYP)降解LMW和HMW-PAHs的效率。 CYP在异生物素的解毒中起关键作用。到目前为止,尚未预测微藻中的CYP结构。在目前的研究中,使用可用的微藻CYP模板通过分子建模来构建蛋白质结构。建模的微藻3D结构与38种不同的PAH化合物对接,有关蛋白质与PAH之间相互作用的信息也就是。结合位点以及相互作用方式进行了研究。我们报告说,CYP从微藻类血球菌和凯氏小球藻被发现具有对LMW和HMW-PAHs的广泛氧化能力。 P kessleri表现出最小值,滑行得分为-10.23,滑行能量为-23.48 kcal / mol。 PAHs通过分子间氢键与Lys(69),Tip(96),Gln(397)和Arg(398)上的CYP活性位点结合。此外,研究表明,PAHs通过分子间氢键与CYP活性位点相互作用。疏水键,π-π相互作用和范德华相互作用。因此,结构解析研究证实,藻类副生小球藻(Parachlorella kessleri)具有比其他微生物更有效地修复HMW的能力。我们的结果提供了一个框架,用于理解CYP蛋白的结构和可能的PAH降解结合位点,并且可以作为鉴定phycoremediation潜力的筛选工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号