...
首页> 外文期刊>Engineering Structures >Real-time hybrid simulation of a shear building with a uni-axial shake table
【24h】

Real-time hybrid simulation of a shear building with a uni-axial shake table

机译:具有单轴振动台的剪力房实时混合仿真

获取原文
获取原文并翻译 | 示例
           

摘要

Recent investments in earthquake engineering research have produced an array of experimental equipment and testing capabilities worldwide. Laboratories are often equipped with shake tables, ranging from uni-axial tables to six-degree-of-freedom tables to multiple table arrays. These tables are capable of providing interface boundary conditions for substructure real-time hybrid simulation (RTHS). In the simplest case, the lower stories of a shear building are simulated numerically while the upper stories tested experimentally. Even this simple case reveals the challenges of RTHS using shake tables. Shake tables are highly nonlinear devices, making modeling and control a challenging task. Furthermore, the mass of the test specimen is typically large relative to the capacity of the table, leading to substantial coupling of the table and specimen dynamics. These challenges are exacerbated by the loop of action and reaction between numerical and experimental components in RTHS. Any delay or lag in the realization of the desired table trajectory and measurement of the base shear can introduce inaccuracies and instabilities into the loop. This research investigates the challenges of RTHS using shake tables through a simple uni-axial shake table and shear building specimen. A model-based shake table control approach is successfully implemented for online acceleration tracking. A Kalman filter is used to reduce measurement noise in the RTHS loop without introducing phase lag. Numerical and experimental substructures with low damping are selected to demonstrate the robustness of the proposed framework for a challenging RTHS scenario. Even for shake tables with large control-structure interaction and structures with low damping, the proposed framework is robust, reliable, and uses readily available equipment, providing a new experimental tool for laboratories with modest experimental testing capabilities. (C) 2016 Elsevier Ltd. All rights reserved.
机译:最近在地震工程研究方面的投资已在全球范围内产生了一系列实验设备和测试能力。实验室通常配备有振动台,从单轴工作台到六自由度工作台到多个工作台阵列。这些表能够为子结构实时混合仿真(RTHS)提供界面边界条件。在最简单的情况下,对剪力房的下层进行数值模拟,而上层则通过实验进行测试。即使是这个简单的案例,也暴露了使用摇表的RTHS的挑战。振动台是高度非线性的设备,使建模和控制成为一项艰巨的任务。此外,测试样品的质量通常相对于工作台的容量较大,从而导致工作台与样品动力学的实质耦合。 RTHS中数字和实验组件之间的作用和反应循环加剧了这些挑战。在实现所需的工作台轨迹和测量基础剪力时出现任何延迟或滞后,都会在环路中引入不准确性和不稳定性。这项研究通过简单的单轴振动台和剪切建筑样本研究了使用振动台的RTHS的挑战。基于模型的摇表控制方法已成功实现,用于在线加速度跟踪。卡尔曼滤波器用于减少RTHS环路中的测量噪声,而不会引入相位滞后。选择具有低阻尼的数值和实验子结构来证明所提出框架在具有挑战性的RTHS情况下的鲁棒性。即使对于具有较大控制结构相互作用的振动台和具有低阻尼结构的振动台,所提出的框架也很健壮,可靠,并使用了现成的设备,为具有中等实验测试能力的实验室提供了一种新的实验工具。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号