首页> 外文期刊>Energy & fuels >Two-step Water Splitting Using Mixed-metal Ferrites: thermodynamic Analysis And Characterization Of synthesized Materials
【24h】

Two-step Water Splitting Using Mixed-metal Ferrites: thermodynamic Analysis And Characterization Of synthesized Materials

机译:混合金属铁氧体的两步水分解:合成材料的热力学分析和表征

获取原文
获取原文并翻译 | 示例
           

摘要

We report a comprehensive thermodynamic analysis of thermal oxidation-reduction cycles for producing hydrogen that use metal ferrites with the spinel structure (MFe_2O_4; M = Fe, Co, Ni, and Zn) as the redox material. Solution phases (both solid and liquid) were included in the calculations as well as the expected line compounds. Omitting solution phases, whose existence is experimentally well-documented, has a very significant impact upon the results of the calculations. Thermodynamic modeling of the three important material-related aspects of the process was performed, including synthesis of the ferrite materials from bulk oxides, thermal reduction at high temperatures, and reoxidation by reaction with steam. An experimental investigation of the Ni_xFe_(3-x)O_4 system was performed to provide compositional data for comparison to model predictions. The results indicate that the Fe/Ni ratio, thermal reduction reaction kinetics, and the specifics of the cooling process affect the composition of the synthesized material. In particular, the presence of oxygen in the atmosphere during the cooling period following calcination substantially alters the sample composition. Predicted compositions following thermal reduction indicate that the stabilities are Fe_3O_4 > CoFe_2O_4~NiFe_2O_4 > ZnFe_2O_4 and that the zinc-substituted ferrite is less desirable for solar hydrogen generation because of the high vapor pressure of zinc. Finally, modeling of the water oxidation step shows that efficient reoxidation to the original ferrite is thermodynamically feasible in all cases. We conclude that the temperature history and level of background O_2 present will affect both the phase purity of the initially formed material and the stability of the composition over the course of thermal cycling.
机译:我们报告了对热氧化还原循环生产氢的综合热力学分析,该氢使用具有尖晶石结构(MFe_2O_4; M = Fe,Co,Ni和Zn)的金属铁氧体作为氧化还原材料。计算中包括固溶相(固相和液相)以及预期的线化合物。省略解决方案阶段,其存在在实验上得到了很好的证明,对计算结果有非常重要的影响。对过程中与材料有关的三个重要方面进行了热力学建模,包括从块状氧化物合成铁氧体材料,高温下的热还原以及与蒸汽反应的再氧化。对Ni_xFe_(3-x)O_4系统进行了实验研究,以提供成分数据以与模型预测进行比较。结果表明,Fe / Ni比,热还原反应动力学以及冷却过程的特性会影响合成材料的组成。特别地,在煅烧之后的冷却期间在大气中的氧气的存在实质上改变了样品组成。热还原后的预测组成表明,其稳定性为Fe_3O_4> CoFe_2O_4〜NiFe_2O_4> ZnFe_2O_4,并且由于锌的高蒸气压,锌取代的铁氧体不太适合用于太阳能制氢。最后,对水氧化步骤的建模表明,在所有情况下,热还原到原始铁氧体都是热力学可行的。我们得出结论,温度历史和背景O_2的存在水平将影响初始形成的材料的相纯度以及在热循环过程中组合物的稳定性。

著录项

  • 来源
    《Energy & fuels》 |2008年第6期|p.4115-4124|共10页
  • 作者单位

    Sandia National Laboratories, Livermore, California 94551-0969;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 TK-;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号