首页> 外文期刊>Energy & fuels >Mechanisms Behind the Positive Effects on Bed Agglomeration and Deposit Formation Combusting Forest Residue with Peat Additives in Fluidized Beds
【24h】

Mechanisms Behind the Positive Effects on Bed Agglomeration and Deposit Formation Combusting Forest Residue with Peat Additives in Fluidized Beds

机译:流化床中泥炭添加剂对残渣燃烧森林残余物的积聚和沉积物形成的正面影响的机理

获取原文
获取原文并翻译 | 示例
           

摘要

A compilation was made of the composition of peat from different areas in Sweden, of which a selected set was characterized and co-combusted with forest residue in controlled fluidized-bed agglomeration tests with extensive particle sampling. The variation in ash-forming elements in the different peat samples was large; thus, eight peat samples were selected from the compilation to represent the variation in peat composition in Sweden. These samples were characterized in terms of botanical composition, analyzed for ash-forming elements, and oxidized using a low-temperature ashing procedure, followed by characterization using scanning electron microscopy/electron-dispersive spectroscopy (SEM/EDS) and X-ray diffraction (XRD). The selected peat samples had in common the presence of a small fraction of crystalline phases, such as quartz, microcline, albite, and calcium sulfate. The controlled fluidized-bed agglomeration tests that co-combusted forest residue with peat resulted in a significant increase in agglomeration temperatures compared to combusting forest residue alone. Plausible explanations for this were an increase of calcium, iron, or aluminum in the bed particle layers and/or the reaction of potassium with clay minerals, which prevented the formation of low-melting bed particle layers. The effects on particle and deposit formation during co-combustion were reduced amounts of fine particles and an increased number of coarse particles. The mechanisms for the positive effects were a transfer and/or removal of potassium in the gas phase to a less reactive particular form via sorption and/or a reaction with the reactive peat ash (SiO_2 and CaO), which in most cases formed larger particles (> 1 μm) containing calcium silicon and potassium.
机译:对瑞典不同地区泥炭的组成进行了汇编,对其中一组选定的泥炭进行了表征,并在可控制的流化床附聚试验中与森林残渣一起燃烧,并进行了广泛的颗粒采样。不同泥炭样品中成灰元素的变化很大;因此,从汇编中选择了八个泥炭样品,以代表瑞典泥炭成分的变化。这些样品根据植物成分进行表征,分析成灰元素,并使用低温灰化程序进行氧化,然后使用扫描电子显微镜/电子分散光谱(SEM / EDS)和X射线衍射( XRD)。选定的泥炭样品通常存在一小部分结晶相,例如石英,微晶,钠长石和硫酸钙。与仅燃烧森林残渣相比,将森林残渣与泥炭共同燃烧的受控流化床集聚试验导致团聚温度显着提高。对此的合理解释是床颗粒层中钙,铁或铝的增加和/或钾与粘土矿物的反应,这阻止了低熔点床颗粒层的形成。共燃期间对颗粒和沉积物形成的影响是减少了细颗粒的数量和增加了粗颗粒的数量。产生积极影响的机制是通过吸附和/或与活性泥煤灰(SiO_2和CaO)反应,将气相中的钾转移和/或除去成反应性较低的特定形式,后者在大多数情况下会形成较大的颗粒(> 1μm)包含钙硅和钾。

著录项

  • 来源
    《Energy & fuels》 |2009年第5期|4245-4253|共9页
  • 作者单位

    Energy Technology and Thermal Process Chemistry, Umea University, SE-901 87 Umea, Sweden;

    Division of Energy Engineering, Lulea University of Technology, S-97I 87 Lulea, Sweden;

    Energy Technology and Thermal Process Chemistry, Umea University, SE-901 87 Umea, Sweden;

    Department of Agricultural Research for Northern Sweden, Biomass Technology and Chemistry, Swedish University of Agricultural Sciences, SE-904 03 Umea, Sweden;

    Energy Technology and Thermal Process Chemistry, Umea University, SE-901 87 Umea, Sweden;

    Energy Technology and Thermal Process Chemistry, Umea University, SE-901 87 Umea, Sweden;

    Energy Technology and Thermal Process Chemistry, Umea University, SE-901 87 Umea, Sweden;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号