...
首页> 外文期刊>Energy & fuels >Two-Dimensional Computational Fluid Dynamics Simulation of Biomass Gasification in a Downdraft Fixed-Bed Gasifier with Highly Preheated Air and Steam
【24h】

Two-Dimensional Computational Fluid Dynamics Simulation of Biomass Gasification in a Downdraft Fixed-Bed Gasifier with Highly Preheated Air and Steam

机译:高度预热空气和蒸汽的下沉式固定床气化炉中生物质气化的二维计算流体动力学模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Biomass gasification is regarded as one of the most promising energy recovery technologies for the widespread use of biomass. Mathematical models have been developed to understand this process in downdraft fixed beds using zero- and one-dimensional models, but only a limited number of two-dimensional (2D) models for downdraft fixed-bed reactors can be found in the literature In this study, a 2D computational fluid dynamics (CFD) model was developed to study the gasification process in a downdraft configuration, considering drying, pyrolysis, combustion, and gasification reactions. The gas and solid phases were resolved using an Euler-Euler multiphase approach, with exchange terms for the momentum, mass, and energy. The standard k-ε turbulence model was used in the gas phase. The model results were compared to existing data from a demonstration-scale fixed-bed downdraft gasifier. The simulation results exhibit a reasonable agreement with the experimental data. Parameter studies were performed on the basis of the developed model, which indicated that an external heat source for the high-temperature agent gasification (HTAG) technology using superheated air combined with steam resulted in a limited combustion need in the gasifier and produced syngas with a high H_2 fraction and low tar content, which is environmentally preferable.
机译:生物质气化被认为是生物质广泛使用的最有希望的能量回收技术之一。已经开发了数学模型来理解使用零维和一维模型在下沉式固定床中的这一过程,但是在文献中只能找到有限数量的下沉式固定床反应器的二维(2D)模型。 ,我们开发了一个二维计算流体动力学(CFD)模型,以考虑向下干燥,热解,燃烧和气化反应来研究下降气流构型下的气化过程。使用Euler-Euler多相方法解析气相和固相,并交换动量,质量和能量。在气相中使用标准的k-ε湍流模型。将模型结果与示范规模的固定床向下气流气化炉的现有数据进行了比较。仿真结果与实验数据基本吻合。在开发的模型的基础上进行了参数研究,结果表明,使用过热空气与蒸汽结合的高温试剂气化(HTAG)技术的外部热源导致气化炉内燃烧需求有限,并产生了合成气。 H_2分数高且焦油含量低,这在环境上是优选的。

著录项

  • 来源
    《Energy & fuels》 |2013年第mayajuna期|3274-3282|共9页
  • 作者单位

    School of Industrial Engineering and Management, Department of Materials Science and Engineering, Division of Energy and Furnace Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden;

    Plasco Energy Group Incorporated, 1000 Innovation Drive, Suite 400, Ottawa, Ontario K2K 3E7, Canada;

    School of Industrial Engineering and Management, Department of Materials Science and Engineering, Division of Energy and Furnace Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden;

    School of Industrial Engineering and Management, Department of Materials Science and Engineering, Division of Energy and Furnace Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号