首页> 外文期刊>Energy & fuels >A Simplified Approach to Modeling the Rate of Formation of Gas Hydrates Formed from Mixtures of Gases
【24h】

A Simplified Approach to Modeling the Rate of Formation of Gas Hydrates Formed from Mixtures of Gases

机译:简化由混合气体形成的天然气水合物生成速率的建模方法

获取原文
获取原文并翻译 | 示例
           

摘要

Experiments were conducted in a semibatch stirred tank reactor, equipped with an in situ particle size analyzer, to study the rate of formation of hydrates from mixtures of carbon dioxide and methane. Two gas mixtures of CO_2(1) + CH_4 (2), one with X_1 = 0.4 and the other with X_1= 0.6, were used in the current study. The experimental temperature ranged from 274 to 276 K and the experimental pressure ranged from 20 to 27 bar absolute. The range of temperatures was bounded by the freezing point of water and the temperature at which the CO_2 vapor pressure curve intersects the methane hydrate curve. Initially, the results were analyzed using the kinetic model of Englezos et al. (Chan. Eng. Set 1987, 42, 2659-2666). After a careful re-examination of the model of Englezos et al., it was realized that the mathematical model for gas hydrate formation from gas mixtures could be simplified by directly incorporating the hydrate phase stoichiometry. The new approach has the added advantage that the intrinsic rate constant of gas hydrate formation is required for only a single component. Thus, a new approach was proposed to model the kinetics of gas hydrate formation from a mixture of gases, and the results from these predictions were compared to the results obtained using the model of Englezos et al. The root-mean squares of the relative errors between the experimental results and the predictions of the new model and the model of Englezos et al. were found to be 2.70% and 4.29%, respectively.
机译:在配备有原位粒度分析仪的半间歇搅拌釜反应器中进行实验,以研究由二氧化碳和甲烷的混合物形成水合物的速率。在本研究中,使用了两种CO_2(1)+ CH_4(2)的气体混合物,一种为X_1 = 0.4,另一种为X_1 = 0.6。实验温度为274至276 K,实验压力为20至27 bar绝对压力。温度范围受水的冰点和CO_2蒸气压曲线与甲烷水合物曲线相交的温度限制。最初,使用Englezos等人的动力学模型分析了结果。 (Chan.Eng.Set 1987,42,2659-2666)。在仔细地重新检查了Englezos等人的模型之后,我们意识到可以通过直接合并水合物相化学计量来简化由气体混合物形成气体水合物的数学模型。新方法的另一个优点是,仅单个组分就需要形成天然气水合物的固有速率常数。因此,提出了一种新的方法来模拟由混合气体形成气体水合物的动力学,并将这些预测的结果与使用Englezos等人的模型获得的结果进行比较。实验结果与新模型和Englezos等人的模型的预测之间的相对误差的均方根。被发现分别是2.70%和4.29%。

著录项

  • 来源
    《Energy & fuels》 |2013年第maraaapra期|1204-1211|共8页
  • 作者单位

    Three Streams Engineering, Suite 401, 1925 18th Avenue NE, Calgary, Alberta T2E 7T8,Canada;

    Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada;

    Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada;

    Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号