首页> 外文期刊>Energy & fuels >System Optimization for Fischer-Tropsch Liquid Fuels Production via Solar Hybridized Dual Fluidized Bed Gasification of Solid Fuels
【24h】

System Optimization for Fischer-Tropsch Liquid Fuels Production via Solar Hybridized Dual Fluidized Bed Gasification of Solid Fuels

机译:通过太阳能杂交双流化床气化生产固体燃料的费托液体燃料的系统优化

获取原文
获取原文并翻译 | 示例
           

摘要

A new configuration of solar hybridized dual fluidized bed (DFB) gasification process is proposed with char separation for the production of Fischer Tropsch (FT) liquid fuels from solid fuels of biomass and/or coal. The addition of carbon capture with sequestration and FT reactor tail-gas recycle configurations is also assessed. The studied FT liquid fuels production systems are simulated by using a pseudodynamic model incorporating a year long, hourly averaged solar irisolation time-series. For the case with a solar multiple (i.e., the heliostat field area relative to that required to meet the demand of the DFB gasifier at the point of peak solar thermal output) of 2.64 and bed material storage capacity of 16 h, the calculated annual solar share of the solar hybridized coal-to-liquids system can be increased from 12.2 to 20.3% by the addition of the char separation for a char gasification conversion of 80%. To achieve the well-to-wheel greenhouse gas emissions for FT liquid fuels parity with diesel derived from mineral crude oil, a calculated biomass fraction of 58% is required for the nonsolar coal case, also with a char gasification conversion of 80%. This fraction can be reduced to 30% by carbon capture and sequestration and further reduced to 17% by the integration of solar energy, based on a solar multiple of 2.64 and bed material storage capacity of 16 h. This reduction is significant given that biomass is much more expensive than coal. However, because of the higher content alight hydrocarbons content in the syngas produced with the studied biomass gasification, the specific PT liquids output per unit feedstock of the system decreases with an increase in the biomass fraction. As the biomass fraction is increased from 0 to 100%, this specific output is decreased from 59.6 to 48.3% but can be increased to 71.5 and 70.9%, respectively, by incorporating tail-gas recycle.
机译:提出了一种新的配置有炭分离的太阳能杂交双流化床(DFB)气化工艺,用于从生物质和/或煤的固体燃料生产费托(FT)液体燃料。还评估了通过螯合和FT反应器尾气再循环配置增加的碳捕获量。所研究的FT液体燃料生产系统是通过使用拟动力模型进行仿真的,该模型结合了长达一年的每小时平均太阳虹膜照射时间序列。对于太阳能倍数(即,相对于满足DFB气化炉在峰值太阳能热输出点所需的面积的定日镜场面积)为2.64,床层材料存储容量为16 h的情况,计算出的年太阳能通过增加焦炭分离,使焦炭气化转化率达到80%,可以将太阳能杂交煤制油系统的份额从12.2%增加到20.3%。为了实现与矿物油衍生的柴油相媲美的FT液体燃料的全轮温室气体排放,对于非太阳能煤箱,计算出的生物质分数要求为58%,而且焦炭气化转化率为80%。基于2.64的太阳倍数和16 h的床料存储能力,可通过碳捕获和封存将该比例降低至30%,并通过集成太阳能进一步降低至17%。鉴于生物质比煤炭昂贵得多,这种减少意义重大。但是,由于在研究的生物质气化过程中产生的合成气中较高的轻烃含量,系统中每单位原料的特定PT液体输出随生物质分数的增加而降低。当生物质分数从0增加到100%时,该特定输出从59.6%减少到48.3%,但通过合并尾气再循环,可以分别增加到71.5和70.9%。

著录项

  • 来源
    《Energy & fuels》 |2017年第2期|2033-2043|共11页
  • 作者单位

    Univ Adelaide, Ctr Energy Technol, Adelaide, SA 5005, Australia|Univ Adelaide, Sch Chem Engn, Adelaide, SA 5005, Australia;

    Univ Adelaide, Ctr Energy Technol, Adelaide, SA 5005, Australia|Univ Adelaide, Sch Chem Engn, Adelaide, SA 5005, Australia;

    Univ Adelaide, Ctr Energy Technol, Adelaide, SA 5005, Australia|Univ Adelaide, Sch Chem Engn, Adelaide, SA 5005, Australia;

    Arizona State Univ, Light Works, Tempe, AZ 85281 USA;

    Univ Adelaide, Ctr Energy Technol, Adelaide, SA 5005, Australia|Univ Adelaide, Sch Chem Engn, Adelaide, SA 5005, Australia;

    Univ Adelaide, Sch Chem Engn, Adelaide, SA 5005, Australia|Univ Adelaide, Sch Mech Engn, Adelaide, SA 5005, Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号