首页> 外文期刊>Energy & fuels >Electrocatalytic Cathodes Based on Cobalt Nanoparticles Supported on Nitrogen-Doped Porous Carbon by Strong Electrostatic Adsorption for Advanced Lithium-Sulfur Batteries
【24h】

Electrocatalytic Cathodes Based on Cobalt Nanoparticles Supported on Nitrogen-Doped Porous Carbon by Strong Electrostatic Adsorption for Advanced Lithium-Sulfur Batteries

机译:基于钴纳米颗粒的电催化阴极通过强大的锂硫型电池静电吸附负载氮掺杂多孔碳

获取原文
获取原文并翻译 | 示例
           

摘要

Energy demands have increased rapidly over the previous decades, leading to new innovations in the energy storage field. One of the candidates for advanced energy storage is the lithium-sulfur battery. This Li-S battery is advantageous for its relatively high volumetric and gravimetric energy density and affordability. However, the widespread use and manufacturing of Li-S batteries are hampered by accelerated capacity decay upon cycling due to volume changes at the cathode, a "shuttle effect" of soluble lithium polysulfide (LPS) dissolution from cathode, and kinetically sluggish redox processes. In this study, we have designed a new and unique electrocatalytic cathode composed of ultrasmall cobalt nanoparticles embedded into nitrogen-doped porous carbon to host sulfur for the application of Li-S batteries via strong electrostatic adsorption (SEA). The large surface area (SA(BET) = 2355 m(2) g(-1)) and uniform distribution of ultrafine cobalt nanoparticles embedded in the nitrogen-doped carbon composite enables a high sulfur loading and significantly immobilizes soluble LPS during battery cycling while improving the electrochemical performance through catalytic effects. A sulfur doping of 71 wt % was attained, affording an initial specific capacity of 1219 mAh g(-1) at 0.1 degrees C (1C = 1675 mAh g(-1)) and Coulombic efficiency (99.1%) due to the cathodic multifunctional arrangements. At 0.5 degrees C, the battery initially yields a specific capacity of 968 mAh g(-1) and decreases to 858 mAh g-1 after 100 cycles. The battery delivered a specific capacity of 579 mAh g(-1) after 300 cycles at 1 C and an exceptionally low capacity fade of 0.07% per cycle. This study demonstrates that SEA can be utilized to incorporate highly active metal nanoparticles into sulfur hosts to advance their electrocatalytic function and thereby advance Li-S batteries' stability.
机译:在前几十年中,能源需求迅速增加,导致能量存储领域的新创新。高级储能的候选人之一是锂 - 硫磺电池。该Li-S电池有利于其相对较高的体积和重量能量密度和负担能力。然而,由于阴极在阴极的体积变化,通过阴极的溶于锂多硫化物(LPS)溶解的“梭效应”,通过加速容量衰减,通过加速的容量衰减被加速的能力衰减被加速的能力衰减受到妨碍了Li-S电池的阻碍。在这项研究中,我们设计了由Ultrasmall钴纳米粒子组成的新的和独特的电催化阴极,该族钴纳米粒子嵌入到氮气掺杂的多孔碳中,以通过强大的静电吸附(海)占据Li-S电池的宿主。大表面积(SA(BET)= 2355米(2)G(-1))和嵌入在氮掺杂碳复合材料中的超细钴纳米颗粒的均匀分布使得能够高硫载荷,并且在电池循环期间显着固定可溶性LPS通过催化效果提高电化学性能。获得71wt%的硫掺杂,得到1219mAhg(-1)的初始特异性容量,在0.1℃(1c = 1675mahg(-1))和由于阴极多功能而导致的库仑效率(99.1%)安排。在0.5摄氏度下,电池最初产生968mAhg(-1)的特定容量,并且在100次循环后降低至858mAhg-1。电池在1℃下300次循环后提供579mAhg(-1)的特定容量,并且每循环的异常低容量淡出0.07%。本研究表明,海洋可用于将高活性金属纳米颗粒掺入硫宿主中以推进其电催化功能,从而推进Li-S电池的稳定性。

著录项

  • 来源
    《Energy & fuels》 |2020年第10期|13038-13047|共10页
  • 作者单位

    Virginia Commonwealth Univ Dept Chem Box 2006 Richmond VA 23284 USA;

    Virginia Commonwealth Univ Dept Chem Box 2006 Richmond VA 23284 USA;

    Virginia Commonwealth Univ Dept Chem & Life Sci Engn Med Coll Virginia Campus Richmond VA 23284 USA;

    Virginia Commonwealth Univ Dept Chem Box 2006 Richmond VA 23284 USA|Albaha Univ Dept Chem Albaha 65799 Saudi Arabia;

    Virginia Commonwealth Univ Dept Chem & Life Sci Engn Med Coll Virginia Campus Richmond VA 23284 USA;

    Virginia Commonwealth Univ Dept Chem Box 2006 Richmond VA 23284 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号