...
首页> 外文期刊>Energy & fuels >Coupling Smart Seawater Flooding and CO_2 Flooding for Sandstone Reservoirs: Smart Seawater Alternating CO_2 Flooding (SMSW-AGF)
【24h】

Coupling Smart Seawater Flooding and CO_2 Flooding for Sandstone Reservoirs: Smart Seawater Alternating CO_2 Flooding (SMSW-AGF)

机译:砂岩储层的智能海水驱替与CO_2驱替耦合:智能海水交替CO_2驱替(SMSW-AGF)

获取原文
获取原文并翻译 | 示例
           

摘要

Petroleum engineers continue to seek cost-effective improved oil recovery (IOR) methods to increase recovery efficiency, especially in heavy oil accumulations. Currently, smart water, low-salinity (LS) water, and CO2 are the most economically viable IOR methods according to the abundance of resources. The purpose of this work is to flood Bartlesville sandstone cores saturated with heavy oil successively with seawater, "smart" seawater, and finally CO2, with the aim of obtaining an optimum combination of these relatively low-cost methods. The core-flood experiments achieved promising results that could inform traditional enhanced oil recovery (EOR) methods for heavy oil. Several core-flooding scenarios were run, but the optimum scenario was 8 PV of seawater, 8 PV of smart seawater with depleted Ca2+, and 10 PV of miscible CO2. The seawater alone produced only similar to 20% of original oil in place (OOIP); the smart seawater produced an additional 12.9% of OOIP; and the final miscible CO2 step produced 64.52% of OOIP, for a total of 96.77% of OOIP. There appears to be a synergistic effect of these methods. Other cases investigated also incorporated one LS water and three "smart" seawater cases. When LS water was injected instead of smart seawater, the total oil recovery was slightly lower than that of the smart seawater case. We found that the significant oil recovery was due to the LS water effect and not from the synergic effect of LS water and CO2. This conclusion is based on the solubility of CO2 in LS water being higher than that in smart seawater, which redirects CO2 to dissolve in heavy crude oil and results in increased oil recovery. Using the same compositions of brines that were used in the core-flood experiments, contact angle measurements and spontaneous imbibition tests on the same core materials were performed. The results of contact angle and spontaneous imbibition confirmed a wettability alteration of the rock surface toward more water wetness using our new EOR process. This combination technology can mitigate the CO2 flooding problems (gravity override, viscous channeling, and early breakthrough) and improve CO2 sweep efficiency by incorporating smart seawater, which itself has the ability to increase oil recovery by altering the wettability toward more water wetness and reducing the solubility of CO2 in the injected water, which redirects it to heavy crude oil.
机译:石油工程师继续寻求具有成本效益的改进采油率(IOR)方法,以提高采收率,尤其是在重油聚集中。当前,根据资源的丰富程度,智能水,低盐度(LS)水和CO2是最经济可行的IOR方法。这项工作的目的是先用海水,“智能”海水再注入二氧化碳,依次用重油浸透的Bartlesville砂岩岩心,以期获得这些相对低成本方法的最佳组合。岩心驱油实验取得了可喜的结果,可为传统的重油提高采收率(EOR)方法提供依据。运行了几种注水方案,但最佳方案是8 PV的海水,8 PV的贫Ca2 +的智能海水和10 PV的可混溶CO2。仅海水就产生的石油仅占原位石油(OOIP)的20%左右;智能海水额外产生了OOIP的12.9%;最终的可混溶二氧化碳步骤产生了OOIP的64.52%,总计达到OOIP的96.77%。这些方法似乎具有协同作用。调查的其他案件还包括1例LS水和3例“智能”海水案件。当注入LS水代替智能海水时,总采油量略低于智能海水情况。我们发现显着的采油量是由于LS水的作用而不是LS水和CO2的协同作用。该结论是基于二氧化碳在LS水中的溶解度高于智能海水中的溶解度,从而使二氧化碳重新定向以溶解在重质原油中,从而提高了石油采收率。使用与岩心驱替实验中使用的相同的盐水成分,对相同的岩心材料进行接触角测量和自发吸水测试。接触角和自发吸水的结果证实了使用我们的新的EOR工艺,岩石表面的润湿性向更大的水分方向变化。这种组合技术可通过掺入智能海水来减轻CO2驱油问题(重力超控,粘性通道和早期突破),并提高CO2吹扫效率,而智能海水本身具有通过改变可湿性,增加水湿性和减少油污而增加采油量的能力。 CO2在注入水中的溶解度,从而将其重定向为重质原油。

著录项

  • 来源
    《Energy & fuels》 |2019年第10期|9644-9653|共10页
  • 作者单位

    Missouri Univ Sci & Technol Dept Geosci & Geol & Petr Engn Rolla MO 65409 USA|Missan Oil Co Iraqi Minist Oil Amara 62001 Missan Iraq;

    Missouri Univ Sci & Technol Dept Geosci & Geol & Petr Engn Rolla MO 65409 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号