首页> 外文期刊>Energy & fuels >Experiment and Modeling on Thermal Cracking of n-Dodecane at Supercritical Pressure
【24h】

Experiment and Modeling on Thermal Cracking of n-Dodecane at Supercritical Pressure

机译:正十二烷在超临界压力下热裂解的实验与建模

获取原文
获取原文并翻译 | 示例
           

摘要

A comprehensive understanding of the thermal cracking behavior of hydrocarbon fuels is important for thermal protection applications and investigations into the combustion of thermally cracked fuels. In the present study, n-dodecane is selected as a surrogate for aviation kerosene and it is subjected to a series of thermal cracking experiments at supercritical pressure. According to variations in chemical heat sink, fuel-conversion rate, and gas-production rate, the thermal cracking of n-dodecane is divided into three regions: primary, secondary, and severe. In the primary cracking region, the fuel-conversion rate is lower than 13%, and the liquid products contain only chain alkanes and alkenes. Owing to the mass fraction of main products being proportional to the fuel-conversion rate, a one-step global reaction kinetics is constructed. The secondary cracking region is characterized by rapidly increasing chemical heat sink, fuel-conversion rates, and gas-production rates with increasing fuel temperature, and the appearance of monocyclic aromatic hydrocarbons (MAHs) and cycloalkenes. A kinetic model containing three reactions is proposed for this region. This also considers the thermal decomposition of chain alkanes and alkenes, which result in the formation of MAHs and cycloalkenes. Severe cracking is observed for fuel-conversion rates above 71% where a rapid increase in the concentration of monocyclic and polycyclic aromatic hydrocarbons (PAHs) occurs. The increasing rate of chemical heat sink slows in this region which is characterized by the formation of MAHs, PAHs, and coke. A three-dimensional numerical model is built for the primary and secondary cracking regions, taking the effects of the flow, heat transfer, and thermal cracking of n-dodecane into consideration. Predicted values for the outlet temperature, fuel-conversion rate, and distribution of the main species in all tested cases agree well with the experimental results, validating the numerical model and kinetics for the primary and secondary thermal cracking of n-dodecane.
机译:全面了解烃类燃料的热裂化行为对于热保护应用和热裂化燃料的燃烧研究至关重要。在本研究中,正十二烷被选作航空煤油的替代物,并在超临界压力下进行了一系列热裂解实验。根据化学散热器,燃料转化率和产气率的变化,正十二烷的热裂化分为三个区域:一次,二次和严重。在一次裂化区域,燃料转化率低于13%,液体产品仅包含链烷烃和烯烃。由于主要产品的质量分数与燃料转化率成正比,因此构建了一步全局反应动力学。第二裂化区的特征是随着燃料温度的升高,化学散热器,燃料转化率和产气率迅速提高,并且出现单环芳烃(MAH)和环烯烃。针对该区域提出了包含三个反应的动力学模型。这也考虑了链烷烃和链烯烃的热分解,这会导致MAH和环烯烃的形成。对于燃料转化率高于71%的情况,观察到严重裂解,其中单环和多环芳烃(PAHs)的浓度迅速增加。化学散热片的增加速率在该区域变慢,其特征在于MAH,PAH和焦炭的形成。考虑到正十二烷的流动,传热和热裂化的影响,针对一次和二次裂化区域建立了三维数值模型。在所有测试案例中,出口温度,燃料转化率和主要物质分布的预测值与实验结果吻合良好,验证了正十二烷的一次和二次热裂化的数值模型和动力学。

著录项

  • 来源
    《Energy & fuels》 |2018年第12期|12426-12434|共9页
  • 作者单位

    Tsinghua Univ, Sch Aerosp Engn, Beijing 100084, Peoples R China;

    Tsinghua Univ, Sch Aerosp Engn, Beijing 100084, Peoples R China;

    Tsinghua Univ, Sch Aerosp Engn, Beijing 100084, Peoples R China;

    Tsinghua Univ, Sch Aerosp Engn, Beijing 100084, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号