首页> 外文期刊>Energy & fuels >Insights into Sulfur Uptake by Solid Sorbents from Fossil Fuels and Biomass: Revisiting C-H-O Ternary Diagrams
【24h】

Insights into Sulfur Uptake by Solid Sorbents from Fossil Fuels and Biomass: Revisiting C-H-O Ternary Diagrams

机译:从化石燃料和生物质中吸收固体吸收剂的硫的见解:再谈C-H-O三元图

获取原文
获取原文并翻译 | 示例
           

摘要

Sulfur, omnipresent in fossil fuels and biomass, causes substantial industrial challenges and significant environmental harm when released to the atmosphere. Efficient and cost-effective integration of sulfur removal into high-temperature industrial processes calls for temperature compatible strategies, and solid sorbents offer the most promising solution. This article presents C-H-O ternary diagrams as visual tools for fundamental evaluation of potential sulfur uptake capacity of solid sorbents. The findings of this study are based on thermodynamic analyses and highlight how the C/H/O ratio of the fuel feedstock as well as the gasification or oxidation agent affect sulfur uptake capacity of the sorbents. The thermodynamic effect of changing temperature (T = 1000-1400 K) and pressure (P = 1-10 atm) on sorbent sulfur uptake is also explored. In this study, Ca- and Sr-based sorbents are investigated, but C-H-O ternary diagrams could be calculated for any other potential solid sorbent. Important thermodynamic insights are drawn from the C-H-O ternary equilibria. Importantly, the initial sulfur content of the fuel does not affect the thermodynamic limit of the sorbent, which is primarily a function of the overall C/H/O ratio of the fuel + gasification or oxidation agent. Under reducing conditions, the total gas-phase sulfur concentration depends strongly on the water vapor partial pressure. Moreover, operating at stoichiometric oxygen conditions results in poor sorbent sulfur uptake with a rapid rise in SO2 mole fraction. The article also offers important insights to predict the most favorable conditions for the use of solid sorbents that can mitigate anode deactivation in solid oxide-based carbon fuel cells.
机译:矿物燃料和生物质中无处不在的硫,当释放到大气中时,会引起严峻的工业挑战和严重的环境危害。高效,经济高效地将脱硫技术集成到高温工业流程中,要求采取温度兼容策略,而固体吸附剂则是最有前途的解决方案。本文介绍C-H-O三元图,作为可视化工具,可以对固体吸附剂的潜在硫吸收能力进行基本评估。这项研究的发现基于热力学分析,突出了燃料原料的C / H / O比以及气化剂或氧化剂如何影响吸附剂的硫吸收能力。还探讨了温度变化(T = 1000-1400 K)和压力变化(P = 1-10 atm)对吸附剂硫吸收的热力学影响。在这项研究中,对基于Ca和Sr的吸附剂进行了研究,但是对于任何其他潜在的固体吸附剂,可以计算出C-H-O三元图。重要的热力学见解来自C-H-O三元平衡。重要的是,燃料的初始硫含量不会影响吸附剂的热力学极限,这主要是燃料+气化剂或氧化剂的总C / H / O比的函数。在还原条件下,总气相硫浓度很大程度上取决于水蒸气分压。而且,在化学计量的氧气条件下操作会导致吸附剂硫吸收差,并且SO2摩尔分数迅速增加。本文还提供了重要的见识,以预测使用固体吸附剂的最有利条件,这些条件可以减轻基于固体氧化物的碳燃料电池中阳极的失活。

著录项

  • 来源
    《Energy & fuels》 |2018年第12期|12066-12080|共15页
  • 作者单位

    Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA;

    Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA;

    Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号