首页> 外文期刊>Energy & fuels >Role of Singlet Oxygen in Combustion Initiation of Aromatic Fuels
【24h】

Role of Singlet Oxygen in Combustion Initiation of Aromatic Fuels

机译:单线态氧在芳香燃料燃烧引发中的作用

获取原文
获取原文并翻译 | 示例
           

摘要

Application of singlet oxygen in oxy-fuel systems reduces the activation energy of the initiation reactions, accelerating the chain-branching mechanism and decreasing the overall ignition temperature. However, the underlining reaction mechanism of the surface-generated singlet oxygen O-2 (1)Delta(g) that reacts with fuel surrogates (i.e., toluene) in the gas media remains poorly explored. Herein, comprehensive mechanistic and thermo-kinetic accounts underpinning the reaction of the simplest alkylbenzene, namely, toluene, with singlet oxygen in the gas phase are reported. In analogy to reaction of singlet oxygen with benzene, the titled reaction branches into several opening channels. The 1,4 cycloaddition and ene type reactions of toluene with singlet oxygen affords p-quinonemethide (4-methylenecyclohexa-2,5-dienone) and o-quinonemethide (6-methylenecyclohexa-2,4-dienone), respectively (i.e., very reactive intermediates). The initiation of the para channel follows a concerted mechanism through an enthalpic barrier of 34.5 kJ mol(-1) with a fitted reaction rate coefficient of k(T) = 1.51 x 10(-15) exp(-34 500/(RT)) cm(3) molecule(-1) s(-1). A corresponding value for the formation of o-quinonemethide amounts to 47.6 kJ mol(-1) and k(T) = 8.31 x 10(-14) exp(-42 600/RT) cm(3) molecule(-1) s(-1). Moreover, the relative reactivity of singlet oxygen, based on the reaction rate constants, follows the order of OH H CH3 O-1(2) HO2 O-3(2). These indicate that the presence of singlet oxygen considerably lowers the activation energy of the initiation channels, resulting in an energetically improved combustion process. In addition, the result illustrates that the reported meta route (2+2 cycloaddition) in the catalytic reaction of toluene with metal oxides occurs when the metal oxide promotes triplet to singlet oxygen and positions the adsorbed molecule of O-1(2) parallel to one of the sides of the aromatic ring of the benzene molecule.
机译:单线态氧在含氧燃料系统中的应用会降低引发反应的活化能,从而加速链支化机理并降低总体着火温度。然而,与气体介质中的燃料替代物(即甲苯)反应的表面生成的单重态氧O-2(1)Delta(g)的下层反应机理仍未得到充分研究。在此,报道了在最简单的烷基苯即甲苯与单线态氧在气相中反应的基础上的综合机理和热动力学描述。类似于单线态氧与苯的反应,标题的反应分支成几个开放通道。甲苯与单线态氧的1,4环加成反应和烯类反应分别得到对醌甲基化物(4-亚甲基环己基2,5-二烯酮)和邻醌甲基化物(6-亚甲基环己基2,4-二烯酮)(即非常反应性中间体)。对位通道的引发遵循协同机制,通过34.5 kJ mol(-1)的焓屏障,拟合的反应速率系数为k(T)= 1.51 x 10(-15)exp(-34 500 /(RT) )cm(3)分子(-1)s(-1)。相应的邻醌甲基化物形成值为47.6 kJ mol(-1),k(T)= 8.31 x 10(-14)exp(-42 600 / RT)cm(3)分子(-1)s (-1)。此外,基于反应速率常数,单线态氧的相对反应性遵循OH> H> CH3> O-1(2)> HO2> O-3(2)的顺序。这些表明单重态氧的存在大大降低了引发通道的活化能,从而大大改善了燃烧过程。此外,该结果表明,当金属氧化物将三重态转化为单重态氧并使O-1(2)的吸附分子平行排列时,甲苯与金属氧化物的催化反应中就会出现报告的间位途径(2 + 2环加成)。苯分子芳环的一侧。

著录项

  • 来源
    《Energy & fuels》 |2018年第12期|12851-12860|共10页
  • 作者单位

    Murdoch Univ, Sch Engn & Informat Technol, 90 South St, Murdoch, WA 6150, Australia;

    Murdoch Univ, Sch Engn & Informat Technol, 90 South St, Murdoch, WA 6150, Australia|Al Hussein Bin Talal Univ, Chem Engn Dept, Maan, Jordan;

    Murdoch Univ, Sch Engn & Informat Technol, 90 South St, Murdoch, WA 6150, Australia;

    Murdoch Univ, Sch Engn & Informat Technol, 90 South St, Murdoch, WA 6150, Australia;

    Murdoch Univ, Sch Engn & Informat Technol, 90 South St, Murdoch, WA 6150, Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号