首页> 外文期刊>Energy Conversion & Management >Earth-Air Heat Exchanger thermal performance in Egyptian conditions: Experimental results, mathematical model, and Computational Fluid Dynamics simulation
【24h】

Earth-Air Heat Exchanger thermal performance in Egyptian conditions: Experimental results, mathematical model, and Computational Fluid Dynamics simulation

机译:埃及条件下的地热热交换器的热性能:实验结果,数学模型和计算流体动力学模拟

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, the thermal performance of an Earth-Air Heat Exchanger (EAHE) used for heating and cooling purposes is investigated under Egyptian weather conditions. The soil temperature profile and the temperature distribution of flowing air through horizontal Earth-Air Heat Exchanger (EAHE) is experimentally studied. Also, a mathematical model based on unsteady, one-dimensional- and quasi-state is developed for energy conservation equation. Moreover, an explicit finite difference numerical method is used to solve the developed mathematical model with the help of MATLAB code. Finally, three-dimensional, steady and double precision Computational Fluid Dynamics (CFD) ANSYS Fluent simulation model is established to predict the air and soil temperature. Whereas, the standard kappa - is an element of model is applied to simulate the turbulence kinetic energy of the flowing fluid. The mathematically developed model and CFD simulation result validated against experimental results. Good agreement is achieved with an average error and correlation coefficient of 2.09, 97% and 3.3 and 95.5% for CFD simulation and mathematical model respectively. The CFD model is used in a parametric investigation. A parametric study carried out to explore the impact of different parameters such as pipe diameter, pipe material, pipe space, pipe length and flowing fluid velocity. The results show that some of these parameters have noticeable results in air temperature. Whereas, the pipe diameter increases the air temperature decreases. The outlet air temperature declines from 20.4 degrees C to 18.7 degrees C as the pipe diameter expands from 2 to 3 in. Furthermore, as pipe length increases, outlet air temperature enhances. The temperature changes from 19.7 to 19.9 degrees C as the pipe length elongates from 5.45 m to 7 m. A bit change occurs in outlet air temperature from 19.7 degrees C to 19.8 degrees C when pipe space changes from 0.2 to 0.5 m. Moreover, three different pipe materials such as PVC, steel and copper are implied. The outlet air temperature was 19.7 degrees C in PVC pipe and 19.8, 19.8 degrees C for steel and copper respectively. So the conclusion is that the change in outlet air temperature for various pipe material is neglected compared with their prices. Finally, the effect of fluid velocity was investigated. Therefore, the outlet air temperature declines from 20.4 degrees C to 19.2 degrees C as air accelerates from I to 3 m/s. (C) 2016 Published by Elsevier Ltd.
机译:在本文中,研究了埃及天气条件下用于加热和冷却目的的地热热交换器(EAHE)的热性能。实验研究了水平地面空气-空气热交换器(EAHE)的土壤温度曲线和流动空气的温度分布。此外,建立了基于非稳态,一维和准状态的数学模型用于节能方程。此外,在MATLAB代码的帮助下,使用显式有限差分数值方法来求解已开发的数学模型。最后,建立了三维,稳态和双精度计算流体动力学(CFD)ANSYS Fluent仿真模型,以预测空气和土壤温度。而标准kappa是模型的一个元素,用于模拟流动流体的湍流动能。数学开发的模型和CFD仿真结果与实验结果进行了验证。 CFD仿真和数学模型的平均误差和相关系数分别为2.09、97%,3.3和95.5%,具有良好的一致性。 CFD模型用于参数研究。进行了参数研究,以探索不同参数的影响,例如管道直径,管道材料,管道空间,管道长度和流动流体速度。结果表明,其中一些参数在空气温度中具有明显的结果。而管径增加,空气温度降低。随着管道直径从2英寸增加到3英寸,出口空气温度从20.4摄氏度下降到18.7摄氏度。此外,随着管道长度的增加,出口空气温度也会升高。随着管长度从5.45 m延长至7 m,温度从19.7摄氏度变为19.9摄氏度。当管道空间从0.2 m变为0.5 m时,出口空气温度从19.7摄氏度到19.8摄氏度发生一点变化。而且,暗示了三种不同的管道材料,例如PVC,钢和铜。 PVC管的出口空气温度为19.7摄氏度,钢和铜的出口空气温度分别为19.8摄氏度和19.8摄氏度。因此得出的结论是,与各种价格相比,各种管道材料的出口空气温度变化被忽略了。最后,研究了流体速度的影响。因此,随着空气从I加速到3 m / s,出口空气温度从20.4摄氏度下降到19.2摄氏度。 (C)2016由Elsevier Ltd.出版

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号