...
首页> 外文期刊>Energy Conversion & Management >A novel pinch-based method for process integration and optimization of Kalina cycle
【24h】

A novel pinch-based method for process integration and optimization of Kalina cycle

机译:一种基于捏的卡琳娜循环工艺集成和优化方法

获取原文
获取原文并翻译 | 示例
           

摘要

Low-and-medium waste heat utilization is crucial for alleviating energy dilemma and carbon dioxide emissions in industrial plants. Although Organic Rankine Cycle (ORC) has made significant advances in waste heat recovery, other equally important thermodynamic ways to recover waste heat such as Kalina Cycle (KC) have not been fully explored. In this study, a novel pinch-based mathematical model is developed for process integration and optimization of Kalina Cycle. The model performs heat integration with variable heat capacities and enables the modifications of KC simultaneously, in a bid for generating maximum net power output without increasing the amount of hot utility. The proposed model allows for non-isothermal phase transition of working fluid and can be extended to handle multiple Kalina Cycles combined with process integration, thus enhancing waste heat recovery efficiency. The effectiveness of the proposed method is verified by a well-studied example from literature, in which the net power output is increased by 12.2% compared to the results using existing literature approaches. Furthermore, the developed model has been successfully applied to the post-combustion carbon capture process, where proper integration of process and Kalina Cycle leads to a 15.8% increase in net power output and a 4.13 percentage point decrease in the efficiency penalty.
机译:中小型废热利用对于缓解工厂的能源困境和二氧化碳排放至关重要。尽管有机朗肯循环(ORC)在废热回收方面取得了显着进步,但还没有充分探索其他同样重要的热力学方法来回收废热,例如Kalina循环(KC)。在这项研究中,开发了一种新颖的基于捏的数学模型,用于过程集成和Kalina Cycle的优化。该模型执行具有可变热容量的热集成,并能够同时修改KC,以在不增加热能使用量的情况下产生最大的净功率输出。提出的模型允许工作流体进行非等温相变,并且可以扩展为处理多个卡琳娜循环并结合过程集成,从而提高了废热回收效率。文献中经过充分研究的实例证明了该方法的有效性,与使用现有文献方法的结果相比,净输出功率增加了12.2%。此外,所开发的模型已成功地应用于燃烧后的碳捕集过程,该过程与Kalina循环的正确整合导致净功率输出增加15.8%,效率损失减少4.13个百分点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号