首页> 外文期刊>Coatings >Superlow Friction of a-C:H Coatings in Vacuum: Passivation Regimes and Structural Characterization of the Sliding Interfaces
【24h】

Superlow Friction of a-C:H Coatings in Vacuum: Passivation Regimes and Structural Characterization of the Sliding Interfaces

机译:A-C:H涂层的超流摩擦真空:钝化制度和滑动界面的结构表征

获取原文
           

摘要

A combination of atomistic simulations and vacuum tribometry allows atomic-scale insights into the chemical structure of superlubricious hydrogenated diamond-like carbon (a-C:H) interfaces in vacuum. Quantum molecular dynamics shearing simulations provide a structure-property map of the friction regimes that characterize the dry sliding of a-C:H. Shear stresses and structural properties at the sliding interfaces are crucially determined by the hydrogen content CH in the shear zone of the a-C:H coating. Extremely small CH?(below 3 at.%) cause cold welding, mechanical mixing and high friction. At intermediate CH (ranging approximately from 3 to 20 at.%), cold welding in combination with mechanical mixing remains the dominant sliding mode, but some a-C:H samples undergo aromatization, resulting in a superlubricious sliding interface. A further increase in CH (above 20 at.%) prevents cold welding completely and changes the superlubricity mechanism from aromatic to hydrogen passivation. The hydrogen-passivated surfaces are composed of short hydrocarbon chains hinting at a tribo-induced oligomerization reaction. In the absence of cold welding, friction strongly correlates with nanoscale roughness, measured by the overlap of colliding protrusions at the sliding interface. Finally, the atomistic friction map is related to reciprocating friction experiments in ultrahigh vacuum. Accompanying X-ray photoelectron and Auger electron spectroscopy (XPS, XAES) analyses elucidate structural changes during vacuum sliding of a hydrogen-rich a-C:H with 36 at.% hydrogen. Initially, the a-C:H is covered by a nanometer-thick hydrogen-depleted surface layer. After a short running-in phase that results in hydrogen accumulation, superlubricity is established. XPS and XAES indicate a non-aromatic 1–2-nm-thick surface layer with polyethylene-like composition in agreement with our simulations.
机译:原子模拟和真空谱系的组合允许原子尺度洞察在真空中的超富含氢化金刚石状碳(A-C:H)界面的化学结构。量子分子动力学剪切模拟提供了摩擦制度的结构 - 属性图,其表征A-C:H的干燥滑动。滑动界面处的剪切应力和结构性能由A-C:H涂覆的剪切区中的氢含量CH至关重要。非常小的CH?(低于3。%)导致冷焊接,机械混合和高摩擦。在中间体CH(大约3至20℃下的值)中,冷焊接与机械混合的组合仍然是主要的滑动模式,但是一些A-C:H样品经历芳香化,导致超富量化的滑动界面。 CH(以上20.%)进一步增加(以上。%)防止冷焊接,并将超级润滑机制从芳族变化为氢钝化。氢钝化的表面由摩擦致寡聚反应的短烃链组成。在没有冷焊接的情况下,摩擦与纳米级粗糙度强烈地相关,通过滑动界面处的碰撞突起重叠测量。最后,原子摩擦图与超高真空中的往复摩擦实验有关。伴随X射线光电子和螺旋钻电子光谱(XPS,XAE)分析在富含氢A-C:H的真空滑动期间阐明结构变化:H.%氢气。最初,A-C:H被纳米厚的氢耗尽表面层覆盖。在一段短的运行过程之后导致氢气积聚,建立超级润滑性。 XPS和XAE表示与我们的模拟一致的聚乙烯样组合物的非芳族1-2-NM厚的表面层。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号