首页> 外文期刊>Hydrology and Earth System Sciences Discussions >Determination of vadose zone and saturated zone nitrate lag times using long-term groundwater monitoring data and statistical machine learning
【24h】

Determination of vadose zone and saturated zone nitrate lag times using long-term groundwater monitoring data and statistical machine learning

机译:使用长期地下水监测数据和统计机器学习测定散囊区和饱和区硝酸盐滞后时间

获取原文
       

摘要

In this study, we explored the use of statistical machine learning and long-term groundwater nitrate monitoring data to estimate vadose zone and saturated zone lag times in an irrigated alluvial agricultural setting. Unlike most previous statistical machine learning studies that sought to predict groundwater nitrate concentrations within aquifers, the focus of this study was to leverage available groundwater nitrate concentrations and other environmental variables to determine mean regional vertical velocities (transport rates) of water and solutes in the vadose zone and saturated zone (3.50 and 3.75? m?yr ?1 , respectively). The statistical machine learning results are consistent with two primary recharge processes in this western Nebraska aquifer, namely ( 1 ) diffuse recharge from irrigation and precipitation across the landscape and ( 2 ) focused recharge from leaking irrigation conveyance canals. The vadose zone mean velocity yielded a mean recharge rate (0.46? m?yr ?1 ) consistent with previous estimates from groundwater age dating in shallow wells (0.38? m?yr ?1 ). The saturated zone mean velocity yielded a recharge rate (1.31? m?yr ?1 ) that was more consistent with focused recharge from leaky irrigation canals, as indicated by previous results of groundwater age dating in intermediate-depth wells (1.22? m?yr ?1 ). Collectively, the statistical machine learning model results are consistent with previous observations of relatively high water fluxes and short transit times for water and nitrate in the primarily oxic aquifer. Partial dependence plots from the model indicate a sharp threshold in which high groundwater nitrate concentrations are mostly associated with total travel times of 7?years or less, possibly reflecting some combination of recent management practices and a tendency for nitrate concentrations to be higher in diffuse infiltration recharge than in canal leakage water. Limitations to the machine learning approach include the non-uniqueness of different transport rate combinations when comparing model performance and highlight the need to corroborate statistical model results with a robust conceptual model and complementary information such as groundwater age.
机译:在这项研究中,我们探讨了使用统计机器学习和长期地下水硝酸盐监测数据来估算灌溉的冲积农业环境中的散塞区和饱和区滞后时间。与最先前的统计机器学习研究不同,寻求预测含水层内的地下水硝酸盐浓度,本研究的重点是利用可用的地下水硝酸盐浓度和其他环境变量,以确定水和溶质的平均区域垂直速度(运输率)在VADOSE中区域和饱和区(分别为3.50和3.75?统计机器学习结果与本网内巴斯加州含水层中的两个主要充电过程一致,即(1)从景观中的灌溉和降水中的漫射和(2)从泄漏灌溉输送运河中的重新充电。 Vadose区的平均速度产生平均充电率(0.46μm≤y≤1),与以往的地下室年龄在浅孔(0.38Ω·YR≤1)的地下室年龄的估计一致。饱和区的平均速度产生了与漏灌流管中的聚焦补给更一致的充电率(1.31Ωm≤y≤1),如前龄井的地下室年龄的先前结果所表明的(1.22?M?YR ?1)。集体,统计机器学习模型结果与先前的含水通量和硝酸盐在主要氧气含水层中的含水量和硝酸盐短时间的观察一致。来自模型的部分依赖性图表明,高地下水硝酸盐浓度主要与7?年或更少的总旅行时间相关的锋利阈值,可能反映了最近的管理实践的某些组合和硝酸盐浓度在弥漫性渗透中更高的趋势比运河泄漏水重新充电。对机器学习方法的限制包括在比较模型性能时不同传输速率组合的非唯一性,并突出需要用强大的概念模型和地下水时期等互补信息来证实统计模型结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号