首页> 外文期刊>Geoscientific Model Development >Integrated modeling of canopy photosynthesis, fluorescence, and the transfer of energy, mass, and momentum in the soil–plant–atmosphere continuum (STEMMUS–SCOPE v1.0.0)
【24h】

Integrated modeling of canopy photosynthesis, fluorescence, and the transfer of energy, mass, and momentum in the soil–plant–atmosphere continuum (STEMMUS–SCOPE v1.0.0)

机译:泛孔光合作用,荧光和能量,质量转移的综合建模,植物 - 植物气氛中的植物 - 大气连续核(STEMMUS-SCOPE v1.0.0)

获取原文
           

摘要

Root?water uptake by plants is a vital process that influences terrestrial energy, water, and carbon exchanges. At the soil, vegetation, and atmosphere interfaces, root water uptake and solar radiation predominantly regulate the dynamics and health of vegetation growth, which can be remotely monitored by satellites, using the soil–plant relationship proxy – solar-induced chlorophyll fluorescence. However, most current canopy photosynthesis and fluorescence models do not account for root water uptake, which compromises their applications under water-stressed conditions. To address this limitation, this study integrated photosynthesis, fluorescence emission, and transfer of energy, mass, and momentum in the soil–plant–atmosphere continuum system, via a simplified 1D root growth model and a resistance scheme linking soil, roots, leaves, and the atmosphere. The coupled model was evaluated with field measurements of maize and grass canopies. The results indicated that the simulation of land surface fluxes was significantly improved by the coupled model, especially when the canopy experienced moderate water stress. This finding highlights the importance of enhanced soil heat and moisture transfer, as well as dynamic root growth, on simulating ecosystem functioning.
机译:根?植物的水吸收是影响陆地能量,水和碳交换的重要过程。在土壤,植被和大气界面,根水吸收和太阳辐射主要调节植被生长的动态和健康,可以使用土壤植物关系代理 - 太阳能诱导的叶绿素荧光来远程监测卫星。然而,大多数当前的冠层光合作用和荧光模型不考虑根水吸收,这损害了它们在耐水条件下的应用。为了解决这一限制,通过简化的1D根生长模型和连接土壤,根,叶子,植物,综合光合作用,荧光发射和能量,荧光发射和能量,质量和动量的转移,荧光发射和能量,质量和动量转移,和大气层。通过玉米和草檐的现场测量评估耦合模型。结果表明,通过耦合模型显着改善了陆地助熔剂的模拟,尤其是当冠层经历中度水分胁迫时。这一发现突出了增强土壤热量和水分转移以及模拟生态系统功能的动态生长的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号