首页> 外文期刊>Geoscientific Model Development >Global evaluation of the nutrient-enabled version of the land surface model ORCHIDEE-CNP v1.2 (r5986)
【24h】

Global evaluation of the nutrient-enabled version of the land surface model ORCHIDEE-CNP v1.2 (r5986)

机译:的 陆面过程模式 ORCHIDEE - CNP V1.2 的 启用 营养 版本 的全球 评估 ( r5986 )

获取原文
           

摘要

The availability of phosphorus (P) and nitrogen (N) constrains the ability of ecosystems to use resources such as light, water and carbon. In turn, nutrients impact the distribution of productivity, ecosystem carbon turnovers and their net exchange of CO 2 with the atmosphere in response to variation of environmental conditions in both space and time.?In this study, we evaluated the performance of the global version of the land surface model ORCHIDEE-CNP (v1.2), which explicitly simulates N and P biogeochemistry in terrestrial ecosystems coupled with carbon, water and energy transfers. We used data from remote sensing, ground-based measurement networks and ecological databases. Components of the N and P cycle at different levels of aggregation (from local to global)?are in good agreement with data-driven estimates. When integrated for the period 1850 to 2017 forced with variable climate, rising CO 2 and land use change, we show that ORCHIDEE-CNP underestimates the land carbon sink in the Northern Hemisphere (NH) during recent decades despite an a priori realistic gross primary productivity (GPP) response to rising CO 2 . This result suggests either that processes other than CO 2 fertilization, which are omitted in ORCHIDEE-CNP such as?changes in biomass turnover, are predominant drivers of the northern land sink and/or that the model parameterizations produce emerging nutrient limitations on biomass growth that are too strict in northern areas. In line with the latter, we identified biases in the simulated large-scale patterns of leaf and soil stoichiometry as well as plant P use efficiency, pointing towards P limitations that are too severe towards the poles. Based on our analysis of ecosystem resource use efficiencies and nutrient cycling, we propose ways to address the model biases by giving priority to better representing processes of soil organic P mineralization and soil inorganic P transformation, followed by refining the biomass production efficiency under increasing atmospheric CO 2 , phenology dynamics and canopy light absorption.
机译:磷(p)和氮气(n)的可用性约束了生态系统使用诸如光,水和碳的资源的能力。反过来,营养物质会影响生产率,生态系统碳转发和与大气交换的净交换,以响应环境条件的变化,空间和时间的变化。本研究,我们评估了全球版本的表现土地面模型陆域 - CNP(v1.2),明确地模拟了与碳,水和能量转移的地面生态系统中的N和P生物地球化学。我们使用来自遥感,基于地面测量网络和生态数据库的数据。在不同级别的聚合(来自本地到全局)的N和P周期的组件?与数据驱动估计有关。当综合持有可变气候的1850年至2017年期间,崛起的二氧化碳和土地利用变化时,我们展示了近几十年来低估了北半球(NH)的土地碳汇,尽管尽管先验现实的初级生产力(GPP)对上升二氧化碳的反应。该结果表明,在兰花-CNP中省略了二氧化碳施肥以外的方法,如诸如?生物质周转的变化,是北方陆地水槽的主要驱动器和/或模型参数化对生物质生长产生新兴的营养限制北部地区太严格了。符合后者,我们在模拟大规模模式的叶片和土壤化学计量中的偏差和植物P使用效率,指向对杆子太严重的P限制。根据我们对生态系统资源使用效率和营养循环的分析,我们提出了通过优先考虑土壤有机P矿化和土壤无机P变换的优先考虑方法来解决模型偏差的方法,然后在增加的大气CO下改善生物质生产效率。 2,候选动力学和冠层光吸收。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号