...
首页> 外文期刊>Atmospheric Measurement Techniques Discussions >The Adaptable 4A Inversion (5AI): description and first X CO 2 retrievals from Orbiting Carbon Observatory-2 (OCO-2) observations
【24h】

The Adaptable 4A Inversion (5AI): description and first X CO 2 retrievals from Orbiting Carbon Observatory-2 (OCO-2) observations

机译:可适应的4A反转(5AI):描述和第一X CO 2从轨道碳观察台-2(OCO-2)观察结果

获取原文
           

摘要

A better understanding of greenhouse gas surface sources and sinks is required in order to address the global challenge of climate change. Space-borne remote estimations of greenhouse gas atmospheric concentrations can offer the global coverage that is necessary to improve the constraint on their fluxes, thus enabling a better monitoring of anthropogenic emissions. In this work, we introduce the Adaptable 4A Inversion (5AI) inverse scheme that aims to retrieve geophysical parameters from any remote sensing observation. The algorithm is based on the Optimal Estimation algorithm, relying on the Operational version of the Automatized Atmospheric Absorption Atlas (4A/OP) radiative transfer forward model along with the Gestion et étude des Informations Spectroscopiques Atmosphériques: Management and Study of Atmospheric Spectroscopic Information (GEISA) spectroscopic database. Here, the 5AI scheme is applied to retrieve the column-averaged dry air mole fraction of carbon dioxide ( X CO 2 ) from a sample of measurements performed by the Orbiting Carbon Observatory-2 (OCO-2) mission. Those have been selected as a compromise between coverage and the lowest aerosol content possible, so that the impact of scattering particles can be neglected, for computational time purposes. For air masses below 3.0, 5AI X CO 2 retrievals successfully capture the latitudinal variations of CO 2 and its seasonal cycle and long-term increasing trend. Comparison with ground-based observations from the Total Carbon Column Observing Network (TCCON) yields a bias of 1.30±1.32 ?ppm (parts per million), which is comparable to the standard deviation of the Atmospheric CO 2 Observations from Space (ACOS) official products over the same set of soundings. These nonscattering 5AI results, however, exhibit an average difference of about 3?ppm compared to ACOS results. We show that neglecting scattering particles for computational time purposes can explain most of this difference that can be fully corrected by adding to OCO-2 measurements an average calculated–observed spectral residual correction, which encompasses all the inverse setup and forward differences between 5AI and ACOS. These comparisons show the reliability of 5AI as an optimal estimation implementation that is easily adaptable to any instrument designed to retrieve column-averaged dry air mole fractions of greenhouse gases.
机译:为了解决气候变化的全球挑战,需要更好地了解温室气体表面源和水槽。温室气体大气浓度的空间远程估计可以提供改善其助熔剂的限制所必需的全球覆盖,从而能够更好地监测人为排放。在这项工作中,我们介绍了可适应的4A反转(5AI)逆方案,其旨在从任何遥感观察中检索地球物理参数。该算法基于最佳估计算法,依赖于自动化大气吸收地图集的操作版本(4A / OP)辐射转移模型以及GestionetétudeSdeS信息谱谱谱谱谱谱分析:管理和研究大气光谱信息(Geisa )光谱数据库。这里,应用5AI方案以从通过轨道碳观察到-2(OCO-2)任务进行的测量样品检索二氧化碳(X CO 2)的柱平均干燥空气摩尔分数。已经选择了覆盖和最低气溶胶含量之间的折衷,以便可以忽略散射粒子的影响,以进行计算时间目的。对于低于3.0的空气群,5ai X Co 2检索成功捕获了CO 2的纬度变化及其季节性周期和长期提高趋势。与总碳柱观察网络(TCCON)的地面观测的比较产生1.30±1.32的偏差(百万分之一),其与空间(ACOS)官员的大气二氧化碳二氧化碳观测的标准偏差相当产品相同的探测。然而,与ACOS结果相比,这些非线性的5ai结果表现出约3μppm的平均差异。我们表明,忽略用于计算时间目的的散射粒子可以解释大多数这种差异,这可以通过添加到OCO-2测量来完全校正平均计算的观察到的光谱剩余校正,其包括5a和ACO之间的所有逆设置和前进差异。这些比较显示了5ai的可靠性作为最佳估计实现,这很容易适应任何仪器,该仪器设计用于检索温室气体的柱平均的干燥空气摩尔分数。

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号