首页> 外文期刊>BioMedical Engineering OnLine >Predicting plaque vulnerability change using intravascular ultrasound? ?optical coherence tomography image-based fluid–structure interaction models and machine learning methods with patient follow-up data: a feasibility study
【24h】

Predicting plaque vulnerability change using intravascular ultrasound? ?optical coherence tomography image-based fluid–structure interaction models and machine learning methods with patient follow-up data: a feasibility study

机译:使用血管内超声预测斑块脆弱性变化? ?基于光学相干断层扫描图像的流体结构交互模型和机器学习方法,具有患者的后续数据:可行性研究

获取原文
           

摘要

Coronary plaque vulnerability prediction is difficult because plaque vulnerability is non-trivial to quantify, clinically available medical image modality is not enough to quantify thin cap thickness, prediction methods with high accuracies still need to be developed, and gold-standard data to validate vulnerability prediction are often not available. Patient follow-up intravascular ultrasound (IVUS), optical coherence tomography (OCT) and angiography data were acquired to construct 3D fluid–structure interaction (FSI) coronary models and four machine-learning methods were compared to identify optimal method to predict future plaque vulnerability. Baseline and 10-month follow-up in vivo IVUS and OCT coronary plaque data were acquired from two arteries of one patient using IRB approved protocols with informed consent obtained. IVUS and OCT-based FSI models were constructed to obtain plaque wall stress/strain and wall shear stress. Forty-five slices were selected as machine learning sample database for vulnerability prediction study. Thirteen key morphological factors from IVUS and OCT images and biomechanical factors from FSI model were extracted from 45 slices at baseline for analysis. Lipid percentage index (LPI), cap thickness index (CTI) and morphological plaque vulnerability index (MPVI) were quantified to measure plaque vulnerability. Four machine learning methods (least square support vector machine, discriminant analysis, random forest and ensemble learning) were employed to predict the changes of three indices using all combinations of 13 factors. A standard fivefold cross-validation procedure was used to evaluate prediction results. For LPI change prediction using support vector machine, wall thickness was the optimal single-factor predictor with area under curve (AUC) 0.883 and the AUC of optimal combinational-factor predictor achieved 0.963. For CTI change prediction using discriminant analysis, minimum cap thickness was the optimal single-factor predictor with AUC 0.818 while optimal combinational-factor predictor achieved an AUC 0.836. Using random forest for predicting MPVI change, minimum cap thickness was the optimal single-factor predictor with AUC 0.785 and the AUC of optimal combinational-factor predictor achieved 0.847. This feasibility study demonstrated that machine learning methods could be used to accurately predict plaque vulnerability change based on morphological and biomechanical factors from multi-modality image-based FSI models. Large-scale studies are needed to verify our findings.
机译:冠状动脉斑块脆弱性预测是困难的,因为斑块脆弱性是不平凡的量化,临床上的医学图像模态不足以量化薄帽厚度,仍需要开发高精度的预测方法,以及验证漏洞预测的金标准通常不可用。患者随访血管内超声(IVUS),获得光学相干断层扫描(OCT)和血管造影数据,以构建3D流体结构相互作用(FSI)冠状动脉型号,并比较四种机器学习方法,以确定最佳方法以预测未来的斑块脆弱性。基线和10个月的体内IVUS和10个月随访和OCT冠状动脉斑块数据来自一名患者的两个动脉,使用IRB批准的协议获得了获得的知情同意。构建了IVUS和基于OCT的FSI模型,以获得斑块壁应力/应变和壁剪应力。选择四十五片作为漏洞预测研究的机器学习样本数据库。来自IVUS和OCT图像的十三个关键形态因素和FSI模型的生物力学因子从45切片中提取到分析中的45个切片。量化脂质百分比指数(LPI),帽厚度指数(CTI)和形态斑块漏洞指数(MPVI)以测量斑块脆弱性。四种机器学习方法(最小二乘支持向量机,判别分析,随机森林和集合学习)被采用了使用13个因素的所有组合预测三个指数的变化。使用标准的五倍交叉验证程序来评估预测结果。对于使用支持向量机的LPI改变预测,壁厚是具有曲线下面积的最佳单因素预测器(AUC)0.883,最佳组合因子预测器的AUC达到0.963。对于使用判别分析的CTI改变预测,最小帽厚度是AUC 0.818的最佳单因素预测器,而最佳组合因子预测器达到AUC 0.836。使用随机森林来预测MPVI变化,最小盖厚度是AUC 0.785的最佳单因素预测器,并且最佳组合因子预测器的AUC达到0.847。这种可行性研究表明,机器学习方法可用于基于来自基于多模态图像的FSI模型的形态学和生物力学因素来准确地预测斑块脆弱性变化。需要大规模的研究来验证我们的调查结果。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号