首页> 外文期刊>PLoS One >Performance for rotor system of hybrid electromagnetic bearing and elastic foil gas bearing with dynamic characteristics analysis under deep learning
【24h】

Performance for rotor system of hybrid electromagnetic bearing and elastic foil gas bearing with dynamic characteristics analysis under deep learning

机译:混合电磁轴承转子系统的性能和深度学习动态特性分析的动态特性分析

获取原文
       

摘要

The bearing-rotor system is prone to faults during operation, so it is necessary to analyze the dynamic characteristics of the bearing-rotor system to discuss the optimal structure of the convolutional neural network (CNN) in system fault detection and classification. The turbo expander is undertaken as the research object. Firstly, the hybrid magnetic bearing-rotor system is modeled into the form of four stiffness coefficients and four damping coefficients, so as to analyze and explain the dynamic characteristics of the system. Secondly, the ambient pressure is introduced to analyze the dynamic characteristics of the elastic foil gas bearing-rotor system based on the changes in the dynamic stiffness and dynamic damping of the gas bearing. Finally, the CNN is introduced to be applied in the detection of faults of bearing-rotor system through determining the parameters of the constructed CNN. The results show that the displacement of the rotor increases and the stiffness decreases with the acceleration of the speed of the electromagnetic bearing. The maximum displacement of the rotor can reach 135μm, and the maximum stiffness can be reduced to 35×10 5 N/m. Increase of ambient pressure causes enhancement of main stiffness of the gas bearing, and the main damping decreases accordingly. Analysis of the classification accuracy and loss function based on the CNN model shows that the convolution kernel size of 7*1 and the batch size of 128 can realize the best performance of CNN in fault classification. This provides a data support and reference for studying the dynamic characteristics of the bearing-rotor system and for the optimization of CNN structure in fault classification and detection.
机译:轴承转子系统在操作期间容易出现故障,因此有必要分析轴承转子系统的动态特性,以讨论系统故障检测和分类中的卷积神经网络(CNN)的最佳结构。 Turbo扩展器作为研究对象进行。首先,将混合磁轴承转子系统建模成四个刚度系数和四个阻尼系数的形式,以分析和解释系统的动态特性。其次,引入了环境压力,以根据气体轴承的动态刚度和动态阻尼的变化来分析弹性箔燃气轴承转子系统的动态特性。最后,通过确定构造的CNN的参数来引入CNN以检测轴承转子系统的故障。结果表明,随着电磁轴承的速度加速,转子增加的位移增加,并且刚度降低。转子的最大位移可以达到135μm,最大刚度可以减小到35×10 5 n / m。环境压力的增加导致气体轴承主刚度的增强,并且主要阻尼相应地降低。基于CNN模型的分类精度和损耗功能分析表明,卷积核大小为7 * 1,批量大小为128可以实现CNN在故障分类中的最佳性能。这提供了用于研究轴承转子系统的动态特性的数据支持和参考,并在故障分类和检测中优化CNN结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号