首页> 外文期刊>Applied Microbiology >Methionine Availability in the Arthropod Intestine Is Elucidated through Identification of Vibrio cholerae Methionine Acquisition Systems
【24h】

Methionine Availability in the Arthropod Intestine Is Elucidated through Identification of Vibrio cholerae Methionine Acquisition Systems

机译:通过鉴定Vibrio Cholerae Methionine采集系统,阐明了节肢动物肠道中的甲硫氨酸可用性

获取原文
           

摘要

While only a subset of Vibrio cholerae strains are human diarrheal pathogens, all are aquatic organisms. In this environment, they often persist in close association with arthropods. In the intestinal lumen of the model arthropod Drosophila melanogaster , methionine and methionine sulfoxide decrease susceptibility to V. cholerae infection. In addition to its structural role in proteins, methionine participates in the methionine cycle, which carries out synthetic and regulatory methylation reactions. It is, therefore, essential for the growth of both animals and bacteria. Methionine is scarce in some environments, and the facile conversion of free methionine to methionine sulfoxide in oxidizing environments interferes with its utilization. To ensure an adequate supply of methionine, the genomes of most organisms encode multiple high-affinity uptake pathways for methionine as well as multiple methionine sulfoxide reductases, which reduce free and protein-associated methionine sulfoxide to methionine. To explore the role of methionine uptake and reduction in V. cholerae colonization of the arthropod intestine, we mutagenized the two high-affinity methionine transporters and five methionine sulfoxide reductases encoded in the V. cholerae genome. We show that MsrC is the sole methionine sulfoxide reductase active on free methionine sulfoxide. Furthermore, in the absence of methionine synthesis, high-affinity methionine uptake but not reduction is essential for V. cholerae colonization of the Drosophila intestine. These findings allow us to place a lower limit of 0.05?mM and an upper limit of 0.5?mM on the methionine concentration in the Drosophila intestine.IMPORTANCE Methionine is an essential amino acid involved in both biosynthetic and regulatory processes in the bacterial cell. To ensure an adequate supply of methionine, bacteria have evolved multiple systems to synthesize, import, and recover this amino acid. To explore the importance of methionine synthesis, transport, and recovery in any environment, all of these systems must be identified and mutagenized. Here, we have mutagenized every high-affinity methionine uptake system and methionine sulfoxide reductase encoded in the genome of the diarrheal pathogen V. cholerae . We use this information to determine that high-affinity methionine uptake systems are sufficient to acquire methionine in the intestine of the model arthropod Drosophila melanogaster but are not involved in virulence and that the intestinal concentration of methionine must be between 0.05?mM and 0.5?mM.
机译:虽然只有弧菌霍乱菌株的子集是人腹泻病原体,但都是水生生物。在这种环境中,他们常常与节肢动物密切关联。在型节肢动物果蝇的肠腔内腔中,甲硫氨酸和甲硫氨酸硫氧化硫醚降低了对V.霍乱感染的敏感性。除了在蛋白质中的结构作用之外,甲硫氨酸还参与甲硫氨酸循环,其进行合成和调节甲基化反应。因此,对于动物和细菌的生长至关重要。在某些环境中甲硫氨酸稀缺,并且游离甲硫氨酸在氧化环境中对甲硫氨酸的容纳转化会干扰其利用。为了确保足够的蛋氨酸供应,大多数生物的基因组编码蛋氨酸的多个高亲和力摄取途径以及多个甲硫氨酸亚硫氧化物还原酶,这减少了自由和蛋白质相关的甲硫氨酸硫氧化硫醚。为了探讨甲硫氨酸摄取和降低V.霍乱肠道肠道的作用,我们致诱变了两种高亲和力蛋氨酸转运蛋白转运蛋白和五甲硫氨酸基因组中的甲硫氨酸亚砜还原酶。我们表明MSRC是在游离甲硫氨酸亚砜上活性的唯一甲硫氨酸硫氧化物还原酶。此外,在没有甲硫氨酸合成的情况下,高亲和力蛋氨酸摄取但不降低对于果蝇肠道的霍乱殖民化是必需的。这些发现允许我们放置下限的0.05Ωmm,并且在果蝇肠道中的甲硫氨酸浓度上放置0.5Ωmm的上限。分析蛋氨酸是涉及细菌细胞中生物合成和调节过程的必需氨基酸。为了确保足够的蛋氨酸供应,细菌已经进化了多种系统以合成,进口和回收该氨基酸。为了探讨甲硫氨酸合成,运输和恢复在任何环境中的重要性,必须识别和诱变这些系统。在这里,我们已经诱变了在腹泻病原体V.霍乱基因组中编码的每一种高亲和力蛋氨酸摄取系统和甲硫氨酸亚砜还原酶。我们使用这些信息来确定高亲和力蛋氨酸摄取系统足以在节肢动物果蝇的肠道中获取蛋氨酸,但不参与毒力,并且蛋氨酸的肠道浓度必须在0.05Ω和0.5?mm之间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号