...
首页> 外文期刊>Solar RRL >Suppression of Defects Through Cation Substitution: A Strategic Approach to Improve the Performance of Kesterite Cu_2ZnSn(S,Se)_4 Solar Cells Under Indoor Light Conditions
【24h】

Suppression of Defects Through Cation Substitution: A Strategic Approach to Improve the Performance of Kesterite Cu_2ZnSn(S,Se)_4 Solar Cells Under Indoor Light Conditions

机译:通过阳离子替代抑制缺陷:一种改善kesterite cu_2znsn(se)_4太阳能电池在室内光线条件下性能的战略方法

获取原文
获取原文并翻译 | 示例
           

摘要

Recent efficiency advancements in kesterites have reinforced the use of Cu_2ZnSn(S,Se)_4 (CZTSSe) in indoor photovoltaic applications. However, the performance of kesterites under low light intensity conditions is mainly hindered by deep-level defects. In this study, a strategic approach of silver (Ag) and germanium (Ge) cation substitution to cure these defects are employed. The Ag-doped CZTSSe (CZTSSe:Ag) and Ge-doped (CZTSSe:Ge) samples experimentally demonstrated a significant improvement in kesterite device performance under all intensities of LED and white fluorescent lamp conditions are prepared. Interestingly, the CZTSSe:Ag device exhibited the highest performance levels, i.e., 1.2–1.5 and 2.5–3 times better than those of Ge-doped CZTSSe:Ge and undoped CZTSSe, respectively. This improved device performance is mainly attributed to the reduced energy level of deep-level defects in CZTSSe:Ag. Moreover, these defects assisted in the generation of a larger potential difference between the grain boundary and grain interior in the CZTSSe: Ag sample, attracting minority carriers near the grain boundary. Consequently, the improved carrier separation process reduced the carrier recombination losses and enhanced the power output under low light intensity conditions. This Ag and Ge cation substitution in kesterite is found to be an effective approach to improve the device performance under low light intensity conditions.
机译:酯酯的最近效率进展增强了使用室内光伏应用中的CU_2ZNSN(SE)_4(CZTSSE)。然而,在低光强度条件下kesterites的性能主要受到深度缺陷的阻碍。在这项研究中,采用了一种用于治疗这些缺陷的银(Ag)和锗(Ge)阳离子替代的战略方法。 Ag-掺杂的CZTSSE(CZTSSE:AG)和GE-DOPED(CZTSSE:GE)样品实验表明,在制备的所有强度和白色荧光灯条件下,在keterite器件性能下显着改善。有趣的是,CZTSSE:AG器件的表现出最高的性能水平,即1.2-1.5和2.5-3倍,优于GE-掺杂的CZTSSE:GE和未掺杂的CZTSSE。这种改进的设备性能主要归因于CZTSSE:AG中的深层缺陷的能量水平降低。此外,这些缺陷辅助在CZTSSE:AG样品中产生晶界和晶粒内部之间的较大电位差,吸引谷物边界附近的少数载体。因此,改进的载波分离过程降低了载波复合损耗并在低光强度条件下提高了功率输出。该AG和GE阳离子替代在KETERITE中是一种有效的方法,可以在低光强度条件下改善器件性能。

著录项

  • 来源
    《Solar RRL》 |2021年第4期|2100020.1-2100020.10|共10页
  • 作者单位

    Solar Energy R&D Department Green Energy Institute Mokpo Chonnam 58656 Republic of Korea Optoelectronics Convergence Research Center Chonnam National University Gwangju 61186 Republic of Korea;

    School of Photovoltaic and Renewable Energy Engineering University of New South Wales Sydney NSW 2052 Australia;

    Optoelectronics Convergence Research Center Chonnam National University Gwangju 61186 Republic of Korea Department of Materials Science and Engineering Chonnam National University Gwangju 61186 Republic of Korea;

    Department of Molecular Science and Technology Ajou University Suwon 16499 Republic of Korea;

    Optoelectronics Convergence Research Center Chonnam National University Gwangju 61186 Republic of Korea;

    Optoelectronics Convergence Research Center Chonnam National University Gwangju 61186 Republic of Korea Department of Materials Science and Engineering Chonnam National University Gwangju 61186 Republic of Korea;

    Optoelectronics Convergence Research Center Chonnam National University Gwangju 61186 Republic of Korea;

    Optoelectronics Convergence Research Center Chonnam National University Gwangju 61186 Republic of Korea Department of Materials Science and Engineering Chonnam National University Gwangju 61186 Republic of Korea;

    Photovoltaic Research Department Korea Institute of Energy Research Daejeon 34129 Republic of Korea;

    Photovoltaic Research Department Korea Institute of Energy Research Daejeon 34129 Republic of Korea;

    School of Materials Science and Engineering University of New South Wales Sydney NSW 2052 Australia;

    Department of Molecular Science and Technology Ajou University Suwon 16499 Republic of Korea Department of Materials Science and Engineering Chonnam National University Gwangju 61186 Republic of Korea;

    School of Photovoltaic and Renewable Energy Engineering University of New South Wales Sydney NSW 2052 Australia;

    Optoelectronics Convergence Research Center Chonnam National University Gwangju 61186 Republic of Korea Department of Molecular Science and Technology Ajou University Suwon 16499 Republic of Korea Department of Materials Science and Engineering Chonnam National University Gwangju 61186 Republic of Korea;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    cations; CZTSSe; indoor; substitutions; thin film solar cells;

    机译:阳离子;CZTSSE;室内的;替换;薄膜太阳能电池;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号