...
首页> 外文期刊>mSystems >Comprehensive Bioenergetic Evaluation of Microbial Pathway Variants in Syntrophic Propionate Oxidation
【24h】

Comprehensive Bioenergetic Evaluation of Microbial Pathway Variants in Syntrophic Propionate Oxidation

机译:语法衔接型丙酸氧化中微生物途径变体的综合生物能量评价

获取原文
           

摘要

In this work, a systematic methodology was developed (based on known biochemistry, physiology, and bioenergetics) for the automated feasibility evaluation and net ATP yield quantification of large sets of pathway variants. Possible pathway variants differ in their intermediate metabolites, in which electron carriers are involved, in which steps are consuming/producing ATP, and in which steps are coupled to (and to how many) proton (or its equivalent) translocations. A pathway variant is deemed feasible, under a given set of physiological and environmental conditions, only if all pathway reaction steps have nonpositive Gibbs energy changes and if all the metabolite concentrations remain within an acceptable physiological range (10 ?6 to 10 ?2 M). The complete understanding of syntrophic propionate oxidation remains elusive due to uncertainties in pathways and the mechanisms for interspecies electron transfer (IET). Several million combinations of pathway variants and parameters/conditions were evaluated for propionate oxidation, providing unprecedented mechanistic insight into its biochemical and bioenergetic landscape. Our results show that, under a scenario of optimum environmental conditions for propionate oxidation, the Smithella pathway yields the most ATP and the methylmalonyl-coenzyme A (CoA) pathways can generate sufficient ATP for growth only under a cyclical pathway configuration with pyruvate. The results under conditions typical of methanogenic environments show that propionate oxidation via the lactate and via the hydroxypropionyl-CoA pathways yield the most ATP. IET between propionate oxidizers and methanogens can proceed either by dissolved hydrogen via the Smithella pathway or by different mechanisms (e.g., formate or direct IET) if other pathways are used. IMPORTANCE In this work, an original methodology was developed that quantifies bioenergetically and physiologically feasible net ATP yields for large numbers of microbial metabolic pathways and their variants under different conditions. All variants are evaluated, which ensures global optimality in finding the pathway variant(s) leading to the highest ATP yield. The methodology is designed to be especially relevant to hypothesize on which microbial pathway variants should be most favored in microbial ecosystems under high selective pressure for efficient metabolic energy conservation. Syntrophic microbial oxidation of propionate to acetate has an extremely small quantity of available energy and requires an extremely high metabolic efficiency to sustain life. Our results bring mechanistic insights into the optimum pathway variants, other metabolic bottlenecks, and the impact of environmental conditions on the ATP yields. Additionally, our results conclude that, as previously reported, under specific conditions, IET mechanisms other than hydrogen must exist to simultaneously sustain the growth of both propionate oxidizers and hydrogenotrophic methanogens.
机译:在这项工作中,为自动化可行性评估和大型途径变体的自动化可行性评估和净ATP产量定量开发了一种系统的方法(基于已知的生物化学,生理学和生物终端)。可能的途径变体在其中间代谢物中不同,其中涉及电子载体,其中步骤是消耗/产生ATP的步骤,并且其中步骤耦合到(以及多少)质子(或其等同)易位。只有在给定的一组生理环境条件下,途径变体仅被视为可行的,只有所有途径反应步骤都有非阳性GIBBS能量变化,并且如果所有代谢物浓度保持在可接受的生理范围内(10?6至10?2米) 。由于途径中的不确定性以及散列电子转移(IET)的机制,对语言丙酸氧化氧化的完全理解仍然难以实现。评估了数百万条途径变体和参数/条件的组合,用于丙酸氧化,提供前所未有的机械洞察其生物化学和生物能源景观。我们的结果表明,在丙酸氧化的最佳环境条件的情况下,流动途径产生最多的ATP,甲基甘油酰基 - 辅酶A(COA)途径仅在具有丙酮酸的循环途径构型下仅产生足够的ATP的生长。在甲状腺系环境典型条件下的结果表明,丙酸盐通过乳酸和羟基丙基-CoA途径产生最多的ATP。如果使用其他途径,则丙酸氧化剂和甲酸乙酯之间的IET可以通过溶解的氢或通过不同机制(例如,甲酸或直接IET)进行。重要性在这项工作中,开发了一种原始方法,以在不同条件下量化大量微生物代谢途径及其变体量化生物能源和生理学上可行的净ATP产量。评估所有变体,可确保全局最优能力在寻找导致最高ATP产量的途径变体时。该方法旨在尤其相关于假设微生物途径变体在微生物生态系统中最受欢迎的高选择性压力,以获得有效的代谢节能。丙酸酯对醋酸酯的语言微生物氧化具有极小少量的可用能量,并且需要极高的代谢效率来维持生命。我们的结果将机械洞察力置于最佳的途径变体,其他代谢瓶颈以及环境条件对ATP产量的影响。另外,我们的结果得出结论,如前所述,在特定条件下,氢的IET机制必须同时存在于丙酸盐氧化剂和氢型甲烷的生长。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号