首页> 外文期刊>Microbiology Insights >First Observation of an Acetate Switch in a Methanogenic Autotroph ( Methanococcus maripaludis S2)
【24h】

First Observation of an Acetate Switch in a Methanogenic Autotroph ( Methanococcus maripaludis S2)

机译:首先观察甲烷型自抗粒子(<斜体> Maripoccus maripludis S2)中的醋酸酯开关

获取原文
           

摘要

The transition from acetate production by a microorganism in its early growth phase to acetate re-uptake in its late growth phase has been termed acetate switch. It has been observed in several heterotrophic prokaryotes, but not in an autotroph. Furthermore, all reports hitherto have involved the tricarboxylic acid cycle. This study reports the first observation of acetate switch in a methanogenic autotroph Methanococcus maripaludis S2, which uses the Wolfe cycle for its anaerobic respiration. When grown in minimal medium with carbon dioxide as the sole carbon source, and either ammonium or dinitrogen as the sole nitrogen source, M. maripaludis S2 dissimilated acetate in the early growth phase and assimilated it back in the late growth phase. The acetate switch was more pronounced in the dinitrogen-grown cultures. We postulate that the acetate dissimilation in M. maripaludis S2 may serve as a metabolic outlet for the carbon overflow in the early growth phase, and the assimilation in the late growth phase may be due to the scarcity of the carbon source. Based on the primary and secondary protein structures, we propose that MMP0253 may function as the adenosine diphosphate (ADP)-forming acetyl-CoA synthetase to catalyse acetate formation from acetyl-CoA. To verify this, we produced MMP0253 via the ligation-independent cloning technique in Escherichia coli strain Rosetta (DE3) using pNIC28-Bsa4 as the vector. The recombinant protein showed catalytic activity, when added into a mixture of acetyl-CoA, ADP, and inorganic phosphate (P _(i)). The concentration profile of acetate, together with the enzymatic activity of MMP0253, shows that M. maripaludis S2 can produce acetate and exhibit an acetate switch.
机译:通过微生物在其早期生长相中从醋酸微生物产生的过渡到其晚期生长阶段的醋酸酯再摄取已被称为醋酸开关。它已在几种异养的原核生物中观察到,但不在自动饮料中。此外,迄今为止的所有报告都涉及三羧酸循环。本研究报告说首次观察乙酸盐开关在甲状腺炎自聚吡噻虫甲烷球菌MARIPORUDIS S2中,其使用WOLFE循环进行厌氧呼吸。当在用二氧化碳作为唯一碳源的最小培养基中生长和作为唯一氮源的铵或二氮,M.Maripludis S2在早期生长阶段中散热乙酸盐,并在晚期生长阶段中同化它。醋酸酯开关在二硝化培养物中更加明显。我们假设M.Maripludis S2中的醋酸盐异化可以用作早期生长阶段的碳溢出的代谢出口,并且晚期生长阶段的同化可能是由于碳源的稀缺性。基于初级和次级蛋白质结构,我们提出MMP0253可以用作腺苷二磷酸(ADP)甲酸乙酰-COA合成酶,以催化乙酸乙烯酯的形成。为了验证这一点,我们使用PNIC28-BSA4作为载体,通过在大肠杆菌菌株Rosetta(DE3)中的连接无关的克隆技术生产MMP0253。当添加到乙酰基-COA,ADP和无机磷酸盐的混合物中时,重组蛋白显示催化活性(P _(I))。乙酸盐的浓度曲线与MMP0253的酶活性一起表明,M.Maripludis S2可以产生乙酸盐并表现出醋酸开关。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号