首页> 外文期刊>Global Challenges >Comprehensive Genomic Investigation of Coevolution of mcr genes in Escherichia coli Strains via Nanopore Sequencing
【24h】

Comprehensive Genomic Investigation of Coevolution of mcr genes in Escherichia coli Strains via Nanopore Sequencing

机译:通过纳米孔测序纳米孔测序菌株在大肠杆菌菌株中的综合基因组研究大肠杆菌菌株的综合基因组研究

获取原文
           

摘要

Horizontal gene transfer facilitates the spread of antibiotic resistance genes, which constitutes a global challenge. However, the evolutionary trajectory of the mobile colistin resistome in bacteria is largely unknown. To investigate the coevolution and fitness cost of the colistin resistance genes in wild strains, different assays to uncover the genomic dynamics ofmcr‐1 andmcr‐3 in bacterial populations are utilized.Escherichia coli strains harboring bothmcr‐1 andmcr‐3.1/3.5 are isolated andmcr genes are associated with diverse mobile elements. Under exposure to colistin, themcr‐1 ‐bearing resistome is stably inherited during bacterial replication, butmcr‐3 is prone to be eliminated in populations of certain strains. In the absence of colistin, the persistence rates of themcr‐1 andmcr‐3 ‐bearing subclones varies depending on the genomic background. The decay of themcr ‐bearing bacterial populations can be mediated by the elimination ofmcr ‐containing segments, large genomic deletions, and plasmid loss. Mobile elements, including plasmids and transposons, are double‐edged swords in the evolution of the resistome. The findings support the idea that antibiotic overuse accounts for global spread of multidrug‐resistant (MDR) bacteria. Therefore, stringent regulation of antibiotic prescription for humans and animals should be performed systematically to alleviate the threat of MDR bacteria. The evolutionary trajectory of mobile colistin resistance genes and the underlying genomic basis in bacteria are largely unknown after withdrawal of colistin from animal feed additives. This study comprehensively deciphers the genomic landscape after the elimination ofmcr genes during bacterial growth under different conditions, highlighting the pivotal role of mobile elements in mediating resistance gene transmission.
机译:水平基因转移促进耐药基因的传播,这是一个全球性的挑战。然而,移动粘菌素resistome在细菌的进化轨迹基本上是未知的。为了研究在野生菌株中粘菌素抗性基因的进化和健身成本,不同的测定揭示的 MCR-1和在细菌群体MCR-3被使用。的大肠杆菌菌株窝藏基因组动力学两者的 MCR-1和 MCR-3.1 / 3.5是分离的和 MCR基因与各种移动元件相关联。在暴露于多粘菌素,所述的 MCR-1荷瘤resistome稳定细菌复制过程中继承的,但 MCR-3是容易发生在某些菌株的种群被淘汰。在不存在粘菌素,持续存在率的 MCR-1和 MCR-3荷瘤亚克隆的变化取决于基因组背景。的的 MCR荷瘤细菌群体可以通过消除的 MCR含段,大的基因组缺失,和质粒丧失介导的衰变。移动元件,包括质粒和转座子,都是在resistome的演变双刃剑。该发现支持了过度使用抗生素的占多药耐药(MDR)细菌全球蔓延的想法。因此,对于人类和动物的抗生素处方的严厉调控应系统进行,以减轻细菌耐药的威胁。移动粘菌素抗性基因的进化轨迹和在细菌中的基因组底层基础是从动物饲料添加剂粘菌素停药后很大程度上是未知的。本研究全面的解密的 MCR基因在不同条件下的细菌生长过程中消除后的基因组景观,突出移动元件在介导抗性基因传输的关键作用。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号