...
首页> 外文期刊>Geoscientific Model Development Discussions >A mass- and energy-conserving framework for using machine learning to speed computations: a photochemistry example
【24h】

A mass- and energy-conserving framework for using machine learning to speed computations: a photochemistry example

机译:用于使用机器学习到速度计算的大规模和节能框架:PhotoChemisty示例

获取原文
           

摘要

Large air quality models and large climate models simulate the physical and chemical properties of the ocean, land surface, and/or atmosphere to predict atmospheric composition, energy balance and the future of our planet. All of these models employ some form of operator splitting, also called the method of fractional steps, in their structure, which enables each physical or chemical process to be simulated in a separate operator or module within the overall model. In this structure, each of the modules calculates property changes for a fixed period of time; that is, property values are passed into the module, which calculates how they change for a period of time and then returns the new property values, all in round-robin between the various modules of the model. Some of these modules require the vast majority of the computer resources consumed by the entire model, so increasing their computational efficiency can either improve the model's computational performance, enable more realistic physical or chemical representations in the module, or a combination of these two. Recent efforts have attempted to replace these modules with ones that use machine learning tools to memorize the input–output relationships of the most time-consuming modules. One shortcoming of some of the original modules and their machine-learned replacements is lack of adherence to conservation principles that are essential to model performance. In this work, we derive a mathematical framework for machine-learned replacements that conserves properties – say mass, atoms, or energy – to machine precision. This framework can be used to develop machine-learned operator replacements in environmental models.
机译:大型空气质量模型和大气候模型模拟了海洋,陆地表面和/或气氛的物理和化学性质,以预测大气成分,能量平衡和我们星球的未来。所有这些模型采用某种形式的操作员分离,​​也称为分数步骤的方法,其结构,其使得能够在整个模型内的单独操作者或模块中模拟每个物理或化学过程。在这种结构中,每个模块计算固定时间段的属性变化;也就是说,属性值被传递到模块中,该模块计算它们如何更改一段时间,然后返回到模型的各种模块之间的循环中的新属性值。其中一些模块需要整个模型消耗的绝大多数计算机资源,因此增加其计算效率可以提高模型的计算性能,使得模块中的更现实的物理或化学表现形式,或者这两者的组合。最近的努力已经尝试使用使用机器学习工具来记住最耗时的模块的输入输出关系的模块。一些原始模块及其机器学习的替代品的一个缺点是缺乏对模型性能至关重要的保护原则的依从性。在这项工作中,我们推导了一个机器学习的替代品的数学框架,从而节省了物质 - 说出质量,原子或能量 - 机器精度。该框架可用于开发机器学习的操作员在环境模型中的替代品。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号