首页> 外文期刊>Earth and Space Science >Effects of Microphysical Processes on the Precipitation Spectrum in a Strongly Forced Environment
【24h】

Effects of Microphysical Processes on the Precipitation Spectrum in a Strongly Forced Environment

机译:微药物过程对强迫环境中降水光谱的影响

获取原文
           

摘要

This study investigates the effects of microphysical processes on the precipitation spectrum in a strongly forced environment using the vector vorticity cloud‐resolving model (VVM). Experiments are performed under imposed advective cooling and moistening with two microphysics parameterizations: the predicted particle properties scheme (P3) and Lin scheme (VVM‐Lin). Even though the domain‐averaged precipitation is similar in the two experiments, P3 exhibits stronger extreme precipitation in the spectrum compared with VVM‐Lin. Changes in convective structures are responsible for such a difference. Using the isentropic analyses, we identify that in P3, stronger convective updrafts take place in the high θei regime, where air parcels rarely reach. This is caused by the reduced melting of rimed ice particles for energic parcels. Through defining convective core clouds, the relation between the convective structure on the isentropic diagram and the extreme precipitation can be identified. The shifts toward extreme intensity in the precipitation spectrum suggest that the microphysical processes have significant impacts on the extreme precipitation by the convective core clouds. The treatment of microphysics has significant impacts on the convective structures and then alter the probability of extreme events under the strongly forced environment. Plain Language Summary The microphysical parameterization typically represents cloud microphysical processes in the numerical models. In this study, the authors implemented a new parameterization (P3) in the model. The results show that extreme precipitation is more likely to occur when the environment is warm and moist compared with the original microphysics scheme. The change of the extreme precipitation is associated with the reduced melting effect in an ascending parcel. The melting of ice particles weakens the upward velocity of the parcel and then reduce the extreme precipitation. P3 can reduce the melting effect by its ability to represent fast‐falling hail particles, which can leave the parcel rapidly.
机译:本研究研究了使用载体涡旋云解析模型(VVM)在强制强制环境中降水光谱对沉淀光谱的影响。用两种微妙参数化的施加平均冷却和润湿进行实验:预测颗粒性能方案(P3)和LIN方案(VVM-LIN)。尽管在两个实验中域平均沉淀相似,但与VVM-LIN相比,P3在光谱中表现出更强的极端沉淀。对流结构的变化负责这种差异。使用等熵分析,我们确定在P3中,更强大的对流上升过程在高θei制度中进行,其中空气包很少达到。这是由充电包裹熔化的冰颗粒的熔化降低引起的。通过定义对流核心云,可以识别对流结构与极端降水之间的对流结构之间的关系。降水光谱中朝向极端强度的变化表明,微动物过程对对流核心云极端沉淀产生重大影响。微物质理的治疗对对流结构产生重大影响,然后在强迫环境下改变极端事件的可能性。简单语言摘要微专家参数化通常表示数值模型中的云微物理过程。在这项研究中,作者在模型中实现了一个新的参数化(P3)。结果表明,与原始微型药物方案相比,当环境温暖且湿润时,更可能发生极端沉淀。极端沉淀的变化与上升包裹中的熔化效果降低有关。冰颗粒的熔化削弱了包裹的向上速度,然后减少了极端沉淀。 P3可以通过代表快速落下的冰雹粒子来降低熔化效果,这可以迅速离开包裹。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号