首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >LES study of the impact of moist thermals on the oxidative capacity of the atmosphere in southern West Africa
【24h】

LES study of the impact of moist thermals on the oxidative capacity of the atmosphere in southern West Africa

机译:LES研究湿热热对西非南部大气氧化能力的影响

获取原文
           

摘要

The hydroxyl radical (OH) is a highly reactive species and plays a key role in the oxidative capacity of the atmosphere. We explore the potential impact of a convective boundary layer on reconciling the calculation–measurement differences for OH reactivity (the inverse of OH lifetime) attributable to the segregation of OH and its reactants by thermals and the resulting modification of averaged reaction rates. The large-eddy simulation version of the Meso-NH model is used, coupled on-line with a detailed chemistry mechanism to simulate two contrasted biogenic and urban chemical regimes. In both environments, the top of the boundary layer is the region with the highest calculated segregation intensities but with the opposite sign. In the biogenic environment, the inhomogeneous mixing of isoprene and OH leads to a maximum decrease of 30% of the mean reaction rate in this zone. In the anthropogenic case, the effective rate constant for OH reacting with aldehydes is 16% higher than the averaged value. OH reactivity is always higher by 15 to 40% inside thermals in comparison to their surroundings as a function of the chemical environment and time of the day. Since thermals occupy a small fraction of the simulated domain, the impact of turbulent motions on domain-averaged total OH reactivity reaches a maximum decrease of 9% for the biogenic case and a maximum increase of 5% for the anthropogenic case. Accounting for the segregation of air masses by turbulent motions in regional and global models may increase OH reactivity in urban environments but lower OH reactivity in biogenic environments. In both cases, segregation alone is insufficient for resolving the underestimation between observed and modeled OH reactivity.
机译:羟基(OH)是高反应性物种,在大气的氧化能力中起着关键作用。我们探讨了对流边界层对致力于OH及其反应物的偏析的OH反应性(OH寿命逆)的计算测量差异的潜在影响,该反应物通过热量和其反应物的偏析和所得的平均反应速率的改性。使用Meso-NH模型的大涡仿真版本,在线连接,具有详细的化学机制,以模拟两个对比的生物和城市化学制度。在这两个环境中,边界层的顶部是具有最高计算的分离强度但具有相反标志的区域。在生物环境中,异戊二烯和OH的不均匀混合导致该区内平均反应速率的最大值降低。在人为的情况下,OH与醛反应的有效速率常数比平均值高16%。与周围环境和当天的时间的函数相比,反应性恒温总是更高的15至40%。由于热量占据模拟结构域的一小部分,因此湍流运动对域平均的总OH反应性的影响达到生物外壳的最大降低9%,并且最大增加了人为案例的5%。通过区域和全球模型的湍流运动进行空气群众的分离可能会增加城市环境中的OH反应性,但在生物环境中的反应性降低。在这两种情况下,单独的偏析不足以解决观察和模型的OH反应性之间的低估。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号