...
首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >A multi-model approach to monitor emissions of CO2 and CO from an urban–industrial complex
【24h】

A multi-model approach to monitor emissions of CO2 and CO from an urban–industrial complex

机译:一种多模型方法来监测城市工业综合体二氧化碳排放量的方法

获取原文
           

摘要

Monitoring urban–industrial emissions is often challenging because observations are scarce and regional atmospheric transport models are too coarse to represent the high spatiotemporal variability in the resulting concentrations. In this paper we apply a new combination of an Eulerian model (Weather Research and Forecast, WRF, with chemistry) and a Gaussian plume model (Operational Priority Substances – OPS). The modelled mixing ratios are compared to observed CO2 and CO mole fractions at four sites along a transect from an urban–industrial complex (Rotterdam, the Netherlands) towards rural conditions for October–December 2014. Urban plumes are well-mixed at our semi-urban location, making this location suited for an integrated emission estimate over the whole study area. The signals at our urban measurement site (with average enhancements of 11?ppm CO2 and 40?ppb CO over the baseline) are highly variable due to the presence of distinct source areas dominated by road traffic/residential heating emissions or industrial activities. This causes different emission signatures that are translated into a large variability in observed ΔCO:ΔCO2 ratios, which can be used to identify dominant source types. We find that WRF-Chem is able to represent synoptic variability in CO2 and CO (e.g. the median CO2 mixing ratio is 9.7?ppm, observed, against 8.8?ppm, modelled), but it fails to reproduce the hourly variability of daytime urban plumes at the urban site (R2 up to 0.05). For the urban site, adding a plume model to the model framework is beneficial to adequately represent plume transport especially from stack emissions. The explained variance in hourly, daytime CO2 enhancements from point source emissions increases from 30?% with WRF-Chem to 52?% with WRF-Chem in combination with the most detailed OPS simulation. The simulated variability in ΔCO:?ΔCO2 ratios decreases drastically from 1.5 to 0.6?ppb?ppm?1, which agrees better with the observed standard deviation of 0.4?ppb?ppm?1. This is partly due to improved wind fields (increase in R2 of 0.10) but also due to improved point source representation (increase in R2 of 0.05) and dilution (increase in R2 of 0.07). Based on our analysis we conclude that a plume model with detailed and accurate dispersion parameters adds substantially to top–down monitoring of greenhouse gas emissions in urban environments with large point source contributions within a ?~??10?km radius from the observation sites.
机译:监测城市工业排放往往是具有挑战性的,因为观察结果稀缺,区域大气输送模型太粗糙,以表示所得浓度的高空间变异性。在本文中,我们应用了欧拉模型的新组合(天气研究和预测,WRF,Chemistry)和高斯羽流模型(操作优先物质 - OPS)。将建模混合比与观察到的四个地点观察到四个地点,沿着从城市工业综合体(罗门丹,荷兰)到2014年10月至12月的农村条件的横断面。城市羽毛在我们的半球上很好混合城市位置,使这个位置适用于整个研究区域的集成排放估计。由于道路交通/住宅供热或工业活动主导的不同来源地区,我们城市测量部位的信号(11?PPM CO2和40次)的平均增强率为11?PPM CO2和40?PPB CO)是高度变化的。这导致在观察到的ΔCo:ΔCO2比中转化为大的变异性的不同发射签名,其可用于识别主要源类型。我们发现WRF-Chem能够在CO2和CO中代表天气变异性(例如,中值CO2混合比为9.7〜ppm,观察到8.8〜7pm,建模),但它未能重现白天城市羽毛的每小时变异性在城市网站(R2高达0.05)。对于城市网站而言,将羽流模型添加到模型框架是有益的,可以充分代表羽流量传输,尤其是堆栈排放。每小时解释的差异,点源排放的白天CO2增强增强从WRF-Chem增加到52Ω%,与WRF-Chem结合最详细的OPS仿真。 ΔCo的模拟变异性:ΔCO2比率从1.5到0.6?PPBα1ΔPPMα1次数急剧下降,这与观察到的标准偏差为0.4μm≤PPM?1。这部分是由于改善的风场(R 2增加0.10),而且由于改善的点源表示(r2的增加0.05的r2)和稀释(r2增加0.07)。基于我们的分析,我们得出结论,具有详细和准确的分散参数的羽流模型基本上增加了对城市环境中的温室气体排放的全面监测,在观察网站的大点源贡献中具有大点源贡献。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号